
© 2006 ECM, AFM9A V3.5 ECM ● 94023-0040 ● USA 408-734-3433 1

ECM AFM9A: Introductory* Application Guide

The AFM9A is a universal exhaust gas oxygen (UEGO) sensor controller. The user can
interface with the AFM9A through a serial peripheral interface (SPI) or an analog input.
Through the SPI, the user can calibrate the sensor and read values for oxygen and λ. If using the
analog interface, the user calculates the value of λ or oxygen by using the lookup table provided.

Section 2 shows how to connect the sensor for both configurations. Sections 3 and 4 describe
how to get started with the analog interface. Sections 5 through 10 show how to get started using
the SPI interface. Section 11 contains reference information.

1. Hardware Dimensions

1.3
5±

0.0
2”

0.1±0.01”

0.24±0.01”
1.45±0.05” (

board
 siz

e)

 1.05±0.05” (board size)

0.66±0.05”

JP2, pin 1

JP1, pin 1

Figure 1. Hardware Dimensions

* This document is a simplified, introductory user’s guide to the AFM9A. More detailed

application-specific guides are available.

© 2006 ECM, AFM9A V3.5 ECM ● 94023-0040 ● USA 408-734-3433 2

2. Connecting the Sensor

The sensor is connected to the AFM9A as shown in Figure 2. Table 1 lists the wiring
specifications for connecting the sensor to the AFM9A.

Figure 2. Sensor Connections

To From Bosch Wire Color NTK Wire

Color Min Wire Size Max Wire
Length*

AFM9A JP1,1 Sensor VS+ Black Grey 22 AWG 20 feet
AFM9A JP1,2 Sensor IP+ Red White 22 AWG 20 feet
AFM9A JP1,3 Sensor VS- Yellow Black 22 AWG 20 feet
AFM9A JP1,7 Sensor H- White Yellow 20 AWG 20 feet
AFM9A JP1,8 Sensor H- White Yellow 20 AWG 20 feet
AFM9A JP1,4 Power Supply (NEG) NA NA 20 AWG 20 feet
AFM9A JP1,5 Power Supply (NEG) NA NA 20 AWG 20 feet
AFM9A JP1,6 Power Supply (POS) NA NA 20 AWG 20 feet
AFM9A JP2,10 Power Supply (NEG) NA NA 20 AWG 20 feet
Sensor H+ Power Supply (POS) Grey Blue 20 AWG 20 feet

Table 1. Sensor Wiring Connections

*Longer lengths are possible with a lower gauge wire. Contact ECM.

VS+

IP

VS-

GNDh

GNDh

VBAT

H-

H-

CS

SCLK

MOSI

MISO

RESET

VALID

STANDBY

V OUT

GND

AFM9A

 UEGO
 Sensor

Power Supply
11-28V
3A Min

15A
SLO BLOW

1A
SLO BLOW

JP2

JP1

VS+
IP+
VS-
H-
H+

1

1

10 8

- +

Power
Relay

2

3

4

5

6

7

8

9

2

3

4

5

6

7
NOTE: GND (AFM9A JP2, 10)
and GNDh (AFM9A JP1 4 and
JP1 5) must be connected to the
same ground.

© 2006 ECM, AFM9A V3.5 ECM ● 94023-0040 ● USA 408-734-3433 3

3. Analog Microcontroller Configuration

In the analog configuration, the user microcontroller is connected with three wires as shown in
Figure 3. Table 2 shows how to configure each pin on the user microcontroller. The voltage
levels for VALID (VOH, VOL) and STANDBY (VIH, VIL) are defined in Section 11.

VS+

IP

VS-

GNDh

GNDh

VBAT

H-

H-

CS

SCLK

MOSI

MISO

RESET

VALID

STANDBY

VOUT

GND

AFM9A

VIN

JP2

JP1

1

1

10 8

VALID

GND

STANDBY

2

3

4

5

6

7

8

9 7

6

5

4

3

2

Figure 3. Analog Connections

AFM9A Pin Symbol (AFM9A) Symbol (User

Microcontroller)
User Microcontroller Port
Configuration

JP2, 6 VALID VALID General Purpose Digital Input (0 or 5V)
JP2, 7 STANDBY STANDBY General Purpose Digital Output (0 or 5V)
JP2, 8 VOUT VIN Analog Input (0 to 5V)
JP2, 10 GND GND Common Ground

Table 2. Analog Connections and Port Configuration

4. Analog Operation

When the AFM9A is powered on, it initializes and then warms-up the sensor. During
initialization and warm-up, VALID is low and VOUT corresponds to 0% oxygen. Once the sensor
is ready, VALID is set high and VOUT changes linearly with the measured value of oxygen. VOUT
can be used to read the value of λ or oxygen according to Table 9 in Section 11. If the user

© 2006 ECM, AFM9A V3.5 ECM ● 94023-0040 ● USA 408-734-3433 4

microcontroller sets STANDBY to low, the AFM9A will set VOUT to 0% oxygen, VALID to low,
and turn the heater off (see Figure 9 in Section 11). VALID should be polled regularly; if it is
low, there is an error. Error descriptions can be read via the SPI interface.

5. SPI Microcontroller Configuration

The AFM9A is connected to a SPI master as shown in Figure 4. The AFM9A operates in SPI
slave mode 0 with an alternative implementation of the Slave Select called Chip Select (CS).
Table 3 lists how each connection should be configured on the user microcontroller. All signals
connected to the AFM9A should adhere to the VOH, VOL, VIH, and VIL values in Section 11.

VS+

IP

VS-

GNDh

GNDh

VBAT

H-

H-

CS

SCLK

MOSI

MISO

RESET

VALID

STANDBY

VOUT

GND

AFM9A (SPI Slave)

(SPI Master)

DO

DI

SCLK

CS Control

JP2

JP1

1

1

10 8

GND

2

3

4

5

6

7

8

9 7

6

5

4

3

2

Figure 4. SPI Connections

AFM9A Pin Symbol (AFM9A) Symbol (SPI Master) SPI Master Port Configuration
JP2,1 CS CS Control General Purpose Output
JP2,2 SCLK SCLK Serial Clock (Output)
JP2,3 MOSI MOSI (DO) Master Output/Slave Input (Output)
JP2,4 MISO MISO (DI) Master Input/Slave Output (Input)
JP2,10 GND GND Common Ground

Table 3. SPI Connections

SPI MASTER PERIPHERAL SETTINGS:

1. SPI MODE 0

2. CPOL = 0 (IDLE SCLK = LOW)

3. CPHA = 0 (Data valid on rising edge of SCLK)

4. LSBFE = 0 (MSB of data transmitted first)

5. MAX SCLK = 1.82MHz

6. USER uC is the SPI MASTER

© 2006 ECM, AFM9A V3.5 ECM ● 94023-0040 ● USA 408-734-3433 5

6. SPI Protocol

The leading edge of the clock should be rising, the trailing edge should be falling, and when at
idle the clock should be low. This requires CPOL to be set to zero. Set CPHA to zero so that
data is read on the rising edge of the clock and changed on the falling edge. The MSB of the data
is transmitted first; therefore set LBSFE to zero. The serial clock (SCLK) frequency can be a
maximum of 1.82 MHz. The SPI should adhere to the timing diagrams in Figures 5 and 6.

CS

SCLK

EC

MOSI

MISO DataLOW DataHIGH

Byte 0 Byte 1 Byte 2

25
min

25
min

275ns
min

25
min

Figure 5. Timing Diagram

VIH

VIL

275ns
min

275ns
min

SCLK

Figure 6. Serial Clock Timing Detail

The error code (EC) is automatically returned when the user microcontroller sends Byte 0 (see
Figure 5). The possible values for the EC and their meanings are listed in Table 6.

The user microcontroller can read from or write to the AFM9A. Setting the most significant bit
in Byte 0 to one indicates a write operation. The 7 least significant bits (b6-b0) indicate which
16-bit word on which to operate. A summary of common values for Byte 0 is in Table 4.

Byte 0 (b6-b0) 16-bit Word Type
0x00 Command (read or write) 16-bit unsigned
0x01 Oxygen Value * 1000 (read only) 16-bit signed (two’s complement)
0x02 λ Value * 1000 (read only) 16-bit unsigned

 Table 4. SPI Protocol Summary

MSB LSB

© 2006 ECM, AFM9A V3.5 ECM ● 94023-0040 ● USA 408-734-3433 6

When writing to the AFM9A, the data bytes returned to the user microcontroller should be
ignored. The AFM9A ignores the values of Byte 1 and Byte 2 during a read operation.

Command is used to perform special tasks. The high byte of Command is reserved. Writing a
value to the low byte of Command starts a certain task. Reading from it returns the status of the
task. Table 5 shows the meaning of each bit in the command word.

Bit 15 14 13 12 11 10 9 8
CommandH Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
Read/Write R R R R R R R R
Initial Value 0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
CommandL Reserved Reserved ACFL Reserved WEE Reserved Reserved PFAC
Read/Write R R R R R/W R R R/W
Initial Value 0 0 0 0 0 0 0 0

Table 5. Using Command

Bits 1, 2, 4, 6-15: Reserved. When writing to the command word, these bits should be set to
zero.

Bit 5—ACFL: Air Calibration (Air Cal) Failed. If this bit is set to one, the last Air Cal attempt
failed.

Bit 3—WEE: Write to EEPROM. Writing a one to this bit will save the current Air Cal to the
EEPROM. Once the operation is complete, the AFM9A clears the flag.

Bit 0—PFAC: Perform Air Cal. Writing a one to this bit will initiate an Air Cal. Once the Air
Cal is complete, the AFM9A clears this flag. If the Air Cal was unsuccessful, ACFL is set.

Error Code(EC) Meaning λ /Oxygen
0x00 Normal Operation Valid
0x01 Initialization Invalid
0x14 Sensor Heater Open Invalid
0x15 Sensor Heater Shorted Invalid
0x31 Low Voltage Warning (VBAT < 10.6V) Valid
0x32 High Voltage Warning (VBAT > 30V) Valid
0x41, 0x51 Sensor is Warming Up or Sensor Failure Invalid
0x52 Not Enough Energy To Heat Sensor Invalid

Table 6. Error Codes

7. Initializing and Running the AFM9A

After reset, the AFM9A initializes and then heats up the sensor. When the sensor is ready, the
user can perform an optional air calibration (Air Cal) by placing the sensor in air and initializing
a calibration. After the Air Cal is complete, it should be saved to EEPROM. The user can then

© 2006 ECM, AFM9A V3.5 ECM ● 94023-0040 ● USA 408-734-3433 7

read values for oxygen or λ from the AFM9A. Figure 7 shows a software flow diagram to
initialize and run the AFM9A.

Start

Read Error
Code

EC=0x00? Update timeout
Delay 10ms

Perform
Air Cal?

Timeout
Expired?

Write Init
 Air Cal

Read Air
Cal Status

Delay 10ms Air Cal
Failed

Warm-up
Failed

Air Cal
Done?

Air Cal
Failed?

Read
Oxygen

or

Delay 10ms

Errors?

Handle
Error

Process
Oxygen

or

Microcontroller
Initialization

Write
 Save Air CalNo

No

 Yes

 Yes

Yes

 Yes

 No

See Section 8

See Section 9

See Section 10

Yes

No

Yes

No

No

Figure 7. Software Flow Diagram

The microcontroller initialization should configure the user microcontroller to operate according
to Sections 5 and 6. Section 8 has an example of how to monitor the sensor warm-up period. If
the user wants to perform an Air Cal, Section 9 has an example of how to start the Air Cal by
writing to Command, return the Air Cal status (success/failure) by reading Command, and save
the Air Cal to EEPROM. If the Air Cal is not saved to EEPROM, the calibration will only be
used until the next reset.

After the warm-up and optional Air Cal, the user can read values for oxygen or λ. To avoid
resource conflicts, oxygen or λ should be read at most every 10ms. Section 10 has an example of
how to read oxygen. If a non-zero EC is returned, refer to Table 6.

8. Software Example: AFM9A Initialization Sequence

The AFM9A boots from power-on reset into initialization. After initialization, the AFM9A
warms-up the sensor. Table 7 shows the error codes that occur while initializing from power on
to normal operation. When the AFM9A returns an error code of 0x00, the sensor is ready.

Error Code(EC) Meaning
0x01 Initialization
0x41, 0x51 Sensor is Warming Up
0x00 Normal Operation

Table 7. Initialization and Warm-up Error Codes

© 2006 ECM, AFM9A V3.5 ECM ● 94023-0040 ● USA 408-734-3433 8

/**
* Sensor Warm-up Example
**/
char warmup(){
 char ec; //temporary variable for storing the error code
 int timer=0; //variable for a timeout

while (timer < TIMEOUT){ //TIMEOUT should be about 6000 (60s/10ms)
 CLEAR_CS(); //user-defined function to clear the chip select signal
 delay_us(25); //user-defined microsecond delay
 ec = SPItransfer(0x00); //user-defined spi operation
 SET_CS(); //user-defined function to set chip select signal high
 if (ec == 0x00) break; //if the ec is 0x00, the sensor is ready
 timer++;

delay_ms(10); //wait 10ms between queries (user defined)
 }
 //if the sensor did not warm up properly in less than 60 seconds, there is a problem
 if (timer == TIMEOUT) return WARMUP_FAILED;
 else return WARMUP_SUCCESS;
}

9. Software Example: Performing an Air Calibration

To perform an Air Cal, the SPI master sends the sequence: 0x80 then 0x01 while the sensor is in
ambient air. Bit 0 of Command will stay high until the calibration is complete. If there was an
error, the calibration will abort and set bit 5 of Command. A successful calibration takes about 2
seconds.

/**
* Air Calibration Example
**/
char performAirCal(){
 char command=0x01; //sending 0x01 starts the Air Cal (see Table 5)
 CLEAR_CS(); //function to clear Chip Select (user-defined)
 delay_us(25); //Delay for 25us (user-defined)
 SPItransfer(0x80); //Prepare AFM9A to write command byte
 delay_us(25); //delay for 25us
 SPItransfer(command); //write 0x01 to command byte to start Air Cal
 SET_CS(); //function to Set Chip Select high
 delay_us(25);
 while(command == 0x01){ //wait until Air Cal is complete
 CLEAR_CS(); //now read Command to determine Air Cal Status
 delay_us(25);
 SPItransfer(0x00); //Prepare AFM9A to read Command
 delay_us(25);
 command = SPItransfer(0x00); //store Command
 SET_CS(); //Complete Transmission (only need the low byte)
 delay_ms(10); //user-defined ms delay
 }
 if (command==0x00){ //if the Air Cal was successful…
 CLEAR_CS();
 delay_us(25);
 SPItransfer(0x80); //Prepare AFM9A to write Command

© 2006 ECM, AFM9A V3.5 ECM ● 94023-0040 ● USA 408-734-3433 9

 delay_us(25);
 SPItransfer(0x08); //Tell AFM9A to save Air Cal to EEPROM
 SET_CS();
 }
 return command; //0x00 for success and 0x20 (Bit 5 = 1) for a failed Air Cal (see Table 5)

//The Air Cal will fail if there are any non-zero error codes during the Air Cal
}

10. Software Example: Reading Oxygen

To read oxygen, the SPI master sends 0x01 as Byte 0 (see Table 4), then two dummy bytes (0x00
in this example), and in return receives EC, O2LOW, and O2HIGH respectively (see Figure 8).
Alternatively, the SPI master can send 0x02 as Byte 0 to read λ.

/**
Read Oxygen Example
**/

 …
 int oxygen;
 char EC;
 EC = readOxygen(&oxygen); //to call the function pass the address of (&) the oxygen variable
 …

char readOxygen(int * o2){
unsigned char low, high;
CLEAR_CS(); //Function to clear Chip Select
delay_us(25); //delay for 25 microseconds
char ec = SPItransfer(0x01); //prepare the AFM to send oxygen bytes
delay_us(25);
low = SPItransfer(0x00); //low byte comes first (AFM9A ignores 0x00)
delay_us(25);
high = SPItransfer(0x00); //high byte comes next (AFM9A ignores 0x00)
SET_CS(); //Transmission Complete (CS is set high)
*o2 = high*256+low; //calculate and store oxygen to specified address
return ec; //return the error code

}

CS

SCLK

EC

MOSI

MISO O2LOW O2HIGH

0x01 0x00 0x00

Figure 8. SPI Data Transfers for Reading Oxygen

© 2006 ECM, AFM9A V3.5 ECM ● 94023-0040 ● USA 408-734-3433 10

The following equations convert the bytes received from the AFM9A to λ and percentage
oxygen. If λ and oxygen values are invalid (see Table 6), the AFM9A will reply to requests for
these values with 0 (0x0000) and -32768 (0x8000), respectively. Note that both λ and oxygen are
scaled by a factor of 1000.

11. Reference

The input and output references in Table 8 are relative to the AFM9A.

Symbol Parameter Minimum Typical Maximum Units

VBAT Battery (supply) Voltage 10.7 15 30 V

IBAT Battery (supply) Current 3 A

VIH Input High Voltage (Except Reset) 3 5.5 V

VIL Input Low Voltage -0.5 1.5 V

VOH Output High Voltage 4.3 V

VOL Output Low Voltage 0.6 V

T Operating Temperature -40 25 85 °C
Table 8. Electrical Characteristics

Index VOUT O2 λ Index VOUT O2 λ Index VOUT O2 λ

0 0.000 -28.220 0.462 9 1.646 -5.000 0.852 18 2.992 14.000 3.436
1 0.228 -25.000 0.516 10 1.823 -2.500 0.913 19 3.134 16.000 4.914
2 0.405 -22.500 0.559 11 2.000 0.000 1.000 20 3.205 17.000 6.205
3 0.582 -20.000 0.601 12 2.142 2.000 1.127 21 3.276 18.000 8.380
4 0.760 -17.500 0.640 13 2.284 4.000 1.285 22 3.311 18.500 10.133
5 0.937 -15.000 0.677 14 2.425 6.000 1.485 23 3.347 19.000 12.785
6 1.114 -12.500 0.715 15 2.567 8.000 1.747 24 3.382 19.500 17.266
7 1.291 -10.000 0.755 16 2.709 10.000 2.104 25 3.418 20.000 26.548
8 1.468 -7.500 0.800 17 2.851 12.000 2.622 26 3.485 20.950 AIR

Table 9. Nominal Oxygen and λ Lookup Table

16bit unsigned
(0 to 65.535 λ)

16bit signed
(-32.768 to 32.767%)

© 2006 ECM, AFM9A V3.5 ECM ● 94023-0040 ● USA 408-734-3433 11

VBAT

Heater ON

EC

VOUT

OFF

NA 0x02
Standby

VALID

STANDBY

OFF

0x01
Init.

0x41, 0x51
Sensor Warm-up

10.7 – 30 V

2V

Meas'd O2 or

0x00
Normal Operation

1 sec.
MAX

60 sec. MAX
@ 25°C

VBAT 13V

5V

5V

0V

0V

0V

0V

O2=0, O2=0,

2V

Figure 9. Sensor Start-up Sequence and Standby Mode

For assistance, contact ECM at 408-734-3433 between the hours of 10 am and 6 pm PST.

© 2006 ECM, AFM9A V3.5 ECM ● 94023-0040 ● USA 408-734-3433 12

REV DATE DESCRIPTION PAGE

3.4 9/29/2007 Original release n/a

3.5 3/18/2008

 Rewrote SPI explanation in sections 5.0 and 6.0
 Added lambda/O2 scaling to table 4.
 Fixed error in 9.0. Wrong Air Cal sequence (0x00 then 0x01)
 Table 4 changed to Table 5 at end of sample code in 9.0
 Added range to lambda/O2 calculation in section 10.

4,5
5
8
8

10

