

appsCAN Module
(accelerator pedal position simulator module)

and

gpioCAN Module
(general purpose input/output module)

Instruction Manual

 11-22-2009

© COPYRIGHT 2009 by ECM: ENGINE CONTROL AND MONITORING.
All Rights Reserved.

No part of this manual may be photocopied or reproduced in any form without prior written
consent from ECM: ENGINE CONTROL AND MONITORING.

Information and specifications subject to change without notice.

Printed in the United States of America.

 i

Table of Contents

Introduction 1
Applications as an Accelerator Pedal Position Simulator Module 1
Application as a General-Purpose Control and Monitoring Device 1

Analog I/O, Digital Outputs, and Other I/O 2
Analog I/O 2
Digital Outputs (includes Pulse Output) 4
Other I/O 5

Programming Outputs and Reading Inputs 6
Using ECM’s Configuration Tool 6
Via user-programmed CAN communication (see Appendix F)

Data Sent to (RPDO) and from (TPDO) Module 10

Producing a .dbc File 12

Using the dashCAN Display 14
 MOd (Module) Setup Option 15
 RATE Setup Option 15
 dISP (Display) Setup Option 16
 CONF (Configure) Setup Option (LEdS, LOCK) 16

Appendices 17
A. appsCAN Kit Contents 17
B. Module Stand-alone Mode and EIB Mode 19
C. Setting up ETAS INCA for ECM Modules 23
D. LOCKing and unLOCKing dashCAN 29
E. General Information 29
F. Programming appsCAN via CAN messages 30

 ii

Complex measurement and control systems can be easily built with
LambdaCAN, NOxCAN, NOxCANg, and appsCAN/gpioCAN
modules.

 1

Introduction

The appsCAN module was originally conceived as a device to simulate the analog and digital
signals coming from a drive-by-wire throttle pedal. However, during the product design
process it was realized that with a few enhancements, the appsCAN module could be used as
a general-purpose control and monitoring device. These enhancements were adopted and the
appsCAN module is also sold as gpioCAN. In all but name, the two modules are identical.
In this manual, the module will be referred to as the appsCAN module.

Application as an Accelerator Pedal Position Simulator Module

Most vehicles sold today do not have a physical connection between the accelerator pedal
and the engine’s throttle. Instead, command signals from the accelerator pedal are sent to the
engine controller and the engine’s throttle is controlled by an electric motor. When engines
or vehicles are tested in dynamometer cells, it is no longer necessary to have a robot or
actuator pushing on the accelerator pedal if these signals can be simulated.

The appsCAN module simulates accelerator pedal position signals based on CAN commands
sent to it from the dynamometer controller. Up to four analog outputs and four PWM
outputs can be simulated. Analog outputs can be absolute (based on an internal voltage
reference) or ratiometric (based on external measured reference voltages.

For fail-safe reasons, all accelerator pedals output at least two signals. Coordination of these
signals must be maintained to avoid triggering an engine fault code. The appsCAN module
supports synchronous signal operation which maintains coordination of these signals.

Application as General-Purpose Control and Monitoring Device

With four analog inputs, four analog outputs, and four PWM (i.e. low-side driver) outputs,
the gpioCAN module can serve as a control and monitoring system. Multiple gpioCAN
devices can be linked together to form powerful distributed control and monitoring systems.

 2

Analog I/O, Digital Outputs, and Other I/O

Analog I/O

 Analog Outputs (AO1, AO2, AO3, AO4)

Notes:

1. All analog outputs can be operated in either voltage mode (0 to 5V) or ratiometric mode

(programmed as a percentage of an input reference voltage, range 0 to 15V).
2. The programming of the mode of operation and the default (on power up) voltage or ratio

is performed in the “Configure Analog Outputs” task of the ECM Configuration Tool [on
CD].

3. For example: If analog output AO1 is to be operated in voltage mode, parameter AO1V
would be sent to the module (in an RPDO) with the desired voltage value.

4. For example: If analog output AO1 is to be operated in ratiometric mode, AO1 would be
programmable as a percentage of whatever input reference voltage VRF1 was (via the
parameter AO1%). Both AO1 and VRF1 use GNDa1 as ground. AO1% is sent in an
RPDO to the module.

5. The below table gives details of the analog outputs, their voltage references, and their
grounds.

6. All voltage outputs are 12 bit, all voltage inputs (references) are 16 bit.
7. All analog outputs and voltage references share a common ground.
8. Max current 10mA/channel. Output Impedance 1Ω.
9. C/T# below means Connector/Terminal Number. The left (gray) terminal is “L”, the

right (black) is “R”. See Figure 1 below for connector and terminal numbering.

Name C/T# Color Ref Name Ref C/T# Ref Color Gnd Name Gnd C/T# Gnd Color

 AO1 L7 Orange VRF1 L9 Purple GNDa1 L8 Black
 AO2 L10 Yellow VRF2 L12 Gray GNDa2 L11 Black
 AO3 L6 Green VRF3 L4 White GNDa3 L5 Black
 AO4 L3 Blue VRF4 L1 Tan GNDa4 L2 Black

 Left (Gray) Connector Right (Black) Connector

 7 8 9 10 11 12 1 2 3 4 5 6
 6 5 4 3 2 1 12 11 10 9 8 7

 Figure 1: Terminal Numbering on Connectors
 (Look at Module with Product Label Up)

 3

 Analog Inputs (VRF1, VRF2, VRF3, VRF4)

Notes:

1. If an input reference voltage is not used for ratiometric mode, it is available as a general-

purpose analog input.
2. To be used as a general-purpose analog input, a channel must have its “Enable

Ratiometric” box not checked in the “Configure Analog Outputs” task of the
Configuration Tool.

3. The below table gives details of the analog inputs and their grounds.
4. Range 0 to 15V, 16 bit.
5. All analog inputs share a common ground.
6. C/T# below means Connector/Terminal Number. The left (gray) terminal is “L”, the

right (black) is “R”. See Figure 1 below for connector and terminal numbering.

Input Name Input C/T# Input Color Gnd Name Gnd C/T# Gnd Color

 VRF1 L9 Purple GNDa1 L8 Black
 VRF2 L12 Gray GNDa2 L11 Black
 VRF3 L4 White GNDa3 L5 Black
 VRF4 L1 Tan GNDa4 L2 Black

 Left (Gray) Connector Right (Black) Connector

 7 8 9 10 11 12 1 2 3 4 5 6
 6 5 4 3 2 1 12 11 10 9 8 7

 Figure 1: Terminal Numbering on Connectors
 (Look at Module with Product Label Up)

 4

Digital Outputs (includes Pulse Output)

 Digital Outputs (PWM1, PWM2, PMW3, PWM4)

Notes:

1. Digital outputs are programmable in 8 or 16-bit PWM resolution mode. In 8-bit mode,

all four PWMs can be programmed. In 16-bit PWM resolution mode, only PWM2 and
PWM4 can be programmed.

2. Digital outputs can be programmed (in “Configure PWM Outputs” of Configuration
Tool) for:
i. 8-bit or 16-bit mode. In 8-bit mode worst case resolution: 0.4% Duty Cycle, 4 Hz.
 In 16-bit mode worst case resolution: 0.008% Duty Cycle, 0.1 Hz.
ii. Pull-up (to 5V), or open-collector output
iii. Polarity Active Low (i.e. 100% duty cycle activates low-side driver and pulls output
 to ground)
iv. Pulse Mode operation of the output. In this mode, a single pulse of programmable
 width and delay (from clicking on “Start”). Once pulse mode is activated, the delay,
 width, and triggering of the pulse are programmable in the “Configure & Start Pulse
 Signal” task in the Configuration Tool.
v. The default duty cycle and frequency on power up.

3. PWMs are programmable for 0 to 100% Duty Cycle and 1.5 Hz to 1000 Hz
4. Programmable frequency FRQA is for PWM1 and PWM2. FRQB is for PWM3, PWM4.
5. Maximum voltage for low-side driving: 28 VDC
6. Maximum current sinking: 500 mA/channel
7. All digital outputs share a common ground
8. C/T# below means Connector/Terminal Number. The left (gray) terminal is “L”, the

right (black) is “R”. See Figure 1 below for connector and terminal numbering.

Output Name Output C/T# Output Color Gnd Name Gnd C/T# Gnd Color

 PWM1 R1 Orange GNDd1 R2 Black
 PWM2 R3 Yellow GNDd2 R4 Black
 PWM3 R5 Green GNDd3 R6 Black
 PWM4 R12 Blue GNDd4 R11 Black

 Left (Gray) Connector Right (Black) Connector

 7 8 9 10 11 12 1 2 3 4 5 6
 6 5 4 3 2 1 12 11 10 9 8 7

 Figure 1: Terminal Numbering on Connectors
 (Look at Module with Product Label Up)

 5

Other I/O

 Other I/O (AIN1, 5Vref, VEXC, GNDin)

Notes:

1. AIN1 is an additional 0 to 5V analog input. 16 bits resolution.
2. 5Vref is a 5V reference voltage. 30 mA max.
3. VEXC is an output voltage source (approximately 9.3V) suitable for powering

transducers. 100 mA max.
4. AIN1, 5Vref, and VEXC all share GNDin as a ground.
5. C/T# below means Connector/Terminal Number. The left (gray) terminal is “L”, the

right (black) is “R”. See Figure 1 below for connector and terminal numbering.

Name C/T# Wire Color Gnd Name Gnd C/T# Gnd Color

AIN1 R10 Purple GNDin R9 Black
5Vref R8 Pink GNDin R9 Black
VEXC R7 Red GNDin R9 Black

 Left (Gray) Connector Right (Black) Connector

 7 8 9 10 11 12 1 2 3 4 5 6
 6 5 4 3 2 1 12 11 10 9 8 7

 Figure 1: Terminal Numbering on Connectors
 (Look at Module with Product Label Up)

 6

Programming Outputs and Reading Inputs

There are two ways to program the outputs and to read the inputs of an appsCAN module:
via ECM’s Configuration Tool and via CAN messages sent by another program.

Using ECM’s Configuration Tool

The Configuration Tool runs on your PC and uses a CAN communication device to
communicate with one or more modules. While the tool is being used with modules, just
ECM modules set to stand-alone mode (see Appendix B) should be connected to the CAN
bus. appsCAN is fixed to operate in stand-alone mode only. This chapter focuses on using
the Configuration Tool with the appsCAN module.

The Configuration Tool supports four CAN communication devices: Kvaser, ETAS, Peak
USB to CAN adapters, and the VectorCAN CAN adapter card. Driver software for one of
these adapters must be installed prior to using the Configuration Tool. This software will be
supplied with the adapter or be available on-line. The Configuration Tool is delivered on a
CD.

Once the adapter’s driver and the Configuration Tool software are installed, and with the
appsCAN module(s) powered and connected to the CAN adapter, start the Configuration
Tool software. Click on the “Modules” tab, select the CAN adapter, and click on the
“START” button.

The software will identify all modules on the bus and display them in the “Module” field. If
this does not happen, make sure that the CAN bus is properly terminated (i.e. resistors).
Open the Module field to see all the modules on the bus. If a module is not listed, one reason
could be that its Node ID is the same as another module. To resolve this, remove all
modules except the “missing” one from the CAN bus, STOP then START the software, and
change that module’s Node ID. Another reason that a module is not listed could be that the
module is in EIB mode instead of stand-alone mode. All modules must be in stand-alone
mode.

To configure one of the modules (ex. change its Node ID) or to look at that module’s data,
you have to select that module in the “Module” field.

There are three things you can do with the Configuration Tool:

1. Configure a module. This includes programming the module’s outputs.
2. Look at data coming from that module in real-time and optionally logging it.
3. Produce a .dbc file to be used by your data acquisition program.

Alternatively, 1. and 2. (above) can be performed by direct CAN communication with the
module. For information on how to do this and further detailed information about the
appsCAN module, refer to the Appendix E.

 7

The Configuration Tool for an appsCAN module appears as shown below. On the bottom
one-third of the screen either data from the module (TPDOs) or data to be sent to the module
(RPDOs) is seen. To toggle between showing TPDOs and RPDOs, click on the “Data View”
buttons at the bottom of the screen. Each TPDO or RPDO has two parameters. You can
activate 0, 1, 2, 3, or 4 TPDOs and RPDOs by checking the box beside the TPDO or RPDO.
Minimize the number of activated TPDOs and RPDOs to minimize the bus load.

TPDOs and RPDOs are selected from the pull-down menus. Once a TPDO is activated, data
appears there in real-time. RPDOs are only sent to the module after its “Send” button is
pressed and (optionally if the SYNC option is activated) by sending a SYNC signal (as an
RPDO).

Table 2 contains the names and meanings of the parameters available with appsCAN.

 8

The Configuration Tool with its Task Menu pulled down appears below. A description of
what the tasks do follows.

 9

Change Node ID: Allowable range 0x01 to 0x7F (hex). When you assign a Node ID (NID),
 the following CANs cannot be used by any other devices on the bus:
 0x00, 0x80 + NID, 0x180 + NID, 0x280 + NID, 0x380 + NID, 0x480 + NID,
 0x580 + NID, 0x600 + NID, 0x700 + NID, 0x7E4, 0x7E5.
View Module Information: Manufacturer’s Name, Hardware Ver., Software Ver., Pinouts
Set Broadcast Rate: All activated TPDOs are transmitted every “n” milliseconds. “n” can
 be programmed. 5 ms is the minimum. Data is sent at a baud rate of 500 kbps.
 Default: 5 ms.
Reset TPDOs to Factory Settings: Selects default input parameters.
Reset RPDOs to Factory Settings: Selects default output parameters.
Toggle TPDO CAN ID Auto Set: For advanced users, TPDO CAN IDs can be configured
to an ID in the range 0x181 – 0x57F. However, they are automatically set to defaults again
when the module is power cycled or node ID is changed. If you want the module not to reset
the CAN IDs after the module is power cycled, then set to [Off]. Default is [On].
Toggle RPDO CAN ID Auto Set: For advanced users, RPDO CAN IDs can be configured
to an ID in the range 0x181 – 0x57F. However, they are automatically set to defaults again
when the module is power cycled or node ID is changed. If you want the module not to reset
the CAN IDs after the module is power cycled, then set to [Off]. Default is [On].
Configure Activation of RPDOs: Here the module is configured either to act on the RPDOs
immediately after they are sent to the module or upon receiving a SYNC signal after they are
sent. The advantage of having a SYNC signal is that you can first load several RPDOs into
the module and then have them be activated by the module at the same time. There are two
SYNC messages that can be transmitted: One just SYNCs the one module selected. The
other SYNC’s all the modules on the bus that have been configured to be SYNC’d. To
SYNC just one module, send a SYNC message through one of the RPDOs. To SYNC all
modules that have been set up to be SYNC’d, click on the “Send Global Sync” button at the
bottom of the screen. Default is [When Sent] (i.e. not SYNC’d)
Configure Analog Outputs: The analog outputs can be programmed as absolute voltages
from 0 to 5V or ratiometrically as a percentage of a 0 to 15V reference input. There are four
analog outputs and four input reference voltages. Each analog output has a specific input
reference voltage assigned to it. For example, analog output 1 (AO1) has VRF1. In
ratiometric mode, if VRF1 is at 8.2V and AO1% is programmed at 40%, AO1 will be 3.28V
(i.e. 8.2 x 0.4). If ratiometric mode is not enabled, the voltages of the analog outputs are
programmed as absolute voltage values via the RPDO parameters AO1V,…AO4V. When
the module is first powered up and has not received commands for the analog outputs, there
are default values that the four analog outputs are set to. These are programmable in the
“Configure Analog Outputs” task.
Configure PWM Outputs: PWM resolution can be chosen as 8-bit or 16-bit. As 8-bit, all
four PWMs can be controlled. As 16-bit, only PWM2 and PWM4 can be controlled. PWMs
are programmable for pull-up (to 5V) (or low-side driver), polarity, pulse mode, and default
(on power up) duty cycle and frequency. For information on pulse mode, see “Configure &
Start Pulse Signal”.
Configure & Start Pulse Signal: Each PWM output can be programmed to output a single
pulse signal. The pulse signal has a programmable delay (after pressing “Start” button) and
pulse width. Before using this feature, the PWM output must be set to “Pulse Mode” in
“Configure PWM Outputs”.

Table 1: Task List for appsCAN Module

 10

Data Sent to (RPDO) and from (TPDO) Module

Data sent to (i.e. commands) appsCAN modules is packaged as RPDOs (Receive Process
Data Object). Data sent from appsCAN modules is packaged as TPDOs (Transmit Process
Data Object). Each RPDO and TPDO contains two parameters and each module can receive
up to four RPDOs and send up to four TPDOs. All selected TPDOs will be sent at the
broadcast rate. For example, if the broadcast rate is 5 ms and four TPDOs were selected to
be sent, then eight pieces of data would be transmitted every 5 ms. To avoid slowing down
the effective data rate on the CAN bus, select the number of TPDOs to be sent and the
broadcast rate sparingly. For the case of multiple modules sending multiple TPDOs on the
same CAN bus, the minimum (i.e. fastest) broadcast rate is given by:

Minimum Broadcast rate (ms) = The total number of TPDOs for all modules x 0.3125

For example, if there are eight modules, each sending two TPDOs, the minimum broadcast
rate is 5 ms.

RPDO data is sent to the module when the “Send” button is pressed. However, if the
“Activation of RPDOs” is set up to be in SYNC mode, a SYNC command must be sent to the
module for it to act on the RPDOs sent.

The data sent or received from appsCAN modules is selected in the “Data” area of the
Configuration Tool. Click in the “Data View” area to select TPDOs or RPDOs. Activate the
number of TPDOs and RPDOs by clicking in its box to put in a check mark. Select the data
contained in each TPDO and RPDO using the pull-down windows. The list of available
parameters for the appsCAN module is given in Table 2.

 11

Parameter
Name
Displayed Full Parameter Name Parameter Description
VSW Vsw (V) Supply voltage measured at the module
TEMP Circuit Board Temp (°C) Temperature of the module circuit board

ERFL Error bit flags (bits) Module error flags (unsigned long format)

ERCd ECM CANOpen Error Code ECM CANOpen Error Code
VRF1 Voltage Reference 1 (V) Voltage measured at reference input 1
VRF2 Voltage Reference 2 (V) Voltage measured at reference input 2
VRF3 Voltage Reference 3 (V) Voltage measured at reference input 3
VRF4 Voltage Reference 4 (V) Voltage measured at reference input 4
AIN1 Analog Input 1 (V) Voltage measured at analog input 1
VEXC Voltage Excitation (V) Voltage supplied for sensor excitation
PWM1 PWM Duty Cycle for Ch 1 (%) Commanded Duty Cycle on PWM channel 1
PWM2 PWM Duty Cycle for Ch 2 (%) Commanded Duty Cycle on PWM channel 2
PWM3 PWM Duty Cycle for Ch 3 (%) Commanded Duty Cycle on PWM channel 3
PWM4 PWM Duty Cycle for Ch 4 (%) Commanded Duty Cycle on PWM channel 4
FRQA Frequency A (Hz) Commanded PWM frequency for PWM1 and PWM2
FRQB Frequency B (Hz) Commanded PWM frequency for PWM3 and PWM4
AO1V Analog Output 1 (V) Analog output commanded to channel 1
AO2V Analog Output 2 (V) Analog output commanded to channel 2
AO3V Analog Output 3 (V) Analog output commanded to channel 3
AO4V Analog Output 4 (V) Analog output commanded to channel 4
AO1% Analog Output 1 (%) % of VRF1 commanded to analog output channel 1
AO2% Analog Output 2 (%) % of VRF2 commanded to analog output channel 2
AO3% Analog Output 3 (%) % of VRF3 commanded to analog output channel 3
AO4% Analog Output 4 (%) % of VRF4 commanded to analog output channel 4
SYNC Synchronize Use to synchronize application of RPDOs in module
NULL Null Dummy filler parameter “Nothing”

Table 2: appsCAN Parameter List

 12

Producing a .dbc File

A .dbc file describes to the device communicating from one or more appsCAN what is in the
data packages. For each module, the packages will contain data for the parameters selected
in the activated TPDOs, RPDOs, and an error code. The Configuration Software has a tool
called “Generate .dbc…” that will generate a .dbc file for all the modules on a CAN bus.
Make sure that each module is configured as desired and that all modules are on the bus
before the “Generate .dbc…” button is pushed. Data package information from all the
modules is stored in the one .dbc file produced.

Programs importing the .dbc file and applying it to the CAN data transmitted by the modules
will see data, etc identified as follows:

Data: name_nid[units]

 where: name = parameter name. See Table 2.
 nid = node id of module in hex
 units = units of parameter

 for example: VRF1_0X01[%] which is the Voltage Reference #1 voltage measured by
 module with nid 0X01

Error code: ECM_Error_Code_nid

 where nid = node id of module hex
 error code is in hex and given in Table 3

 for example: ECM_Error_Code_0x11

Auxiliary: ECM_Auxiliary _time[sec]

 where: time = decrementing countdown to module activation in hex

 for example: ECM_Auxiliary_0X12[sec]

 13

ECM ERROR
CODE LED ACTION DESCRIPTION OF ERRORS
0x0000 Grn ON All OK, (green led constantly on)
0x0002 Grn/Both/Red 2s Power on reset/ Init hardware

0x00A1 N/A Invalid software state
0x00B1 N/A CAN overrun
0x00B2 N/A CAN passive mode
0x00B3 N/A CAN heartbeat error
0x00B4 N/A CAN recover bus off
0x00B5 N/A CAN Tx CanId collision
0x00B6 N/A Serial overrun
0x00B7 N/A CAN overrun Lss
0x00B8 N/A CAN overrun Sdo
0x00B9 N/A CAN overrun Rx
0x00BA N/A CAN overrun ECT5
0x00FF Both ON Module powering down within 500ms

Table 3: appsCAN Error Codes List

 14

Using the dashCAN Display

The dashCAN display (see cover and below) is a small (105 mm x 63 mm x 63 mm), two-
channel remote display for CAN networks containing appsCAN, LambdaCAN and
NOxCAN(g) modules. dashCAN comes with a two meter cable and a “T” (P/N 09-05).
Simply attach dashCAN to the CAN bus and any two parameters being transmitted from
modules can be displayed. dashCAN can display parameters from the same module or two
different modules. Multiple dashCAN displays can be attached to the CAN bus.

dashCAN has two modes of operation: RUN (when measurements are displayed) and SYS
(where dashCAN is set-up). The SYS key toggles between the modes.

While in RUN mode:

i. If the ↑ button is pressed, the displays will show the serial numbers of the modules

assigned to the displays.
ii. If the ↓ button is pressed, the displays will show the parameter names assigned to the

displays. See Table 2.
iii. If the ENT button is pressed, the displays will show the units of the parameters.

“PCTG” is %. “dIM” means dimensionless (ex. for AFR, FAR, PHI, Lambda).

In RUN mode, four things other than data can be displayed:

i. “ERR” and “####” where “###” is an error code. See Table 4.
ii. “….” which means that a module has not been assigned to that display.
iii. “----“ which means that dashCAN has an internal problem.
iv. “XXXX” which means that dashCAN is not receiving any data from the module assigned

to that display.

When first entering SYS mode, either “MOd” will be on the upper display or “LOCK” will
be on the lower display. If “MOd” is displayed, the ↑ and ↓ keys will roll through the setup
options (see Table 5). First the options for the upper channel are shown on the upper display,
followed by identical options for the lower channel on the lower display, ending with the
global CONF (Configuration) setup. Pressing the ENT key will select the displayed setup
option and allow its programming.

If “LOCK” is displayed, the dashCAN has been locked and its setup cannot be changed until
it is unlocked. Appendix D describes how to LOCK and unlock dashCAN.

 15

Setup Option Level 1 Function
MOd Select module s/n. Default is NONE.

RATE Set parameter averaging rate. Range 0.001 to 1.000
 Default is 1.000

dISP Select parameter. Note: Parameters available are
 those programmed using Configuration Software.

CONF LEdS Set display intensity. Default is 3333.
 LOCK Lock and Unlock Display for Programming

MOd, RATE, and dISP appear on the upper display for the upper channel and on the lower
display for the lower channel. CONF just appears on the lower display and is for global
dashCAN setup. All entries must be followed by pressing the ENT key.

 Table 4: Menu Tree for dashCAN

MOd (Module) Setup Option

In MOd setup, the serial number of the module assigned to the upper or lower channel is
entered. The serial number is written on a label on the module. The module assigned to the
upper channel will send information to the upper display and the module assigned to the
lower channel will send information to the lower display. The same module can be assigned
to both channels or different modules can be assigned to each channel.

After entering MOd (i.e. press ENT when “MOd” is displayed), the serial numbers of the
available modules will be displayed. Select using ↑ and ↓ followed by the ENT key.

RATE Setup Option

Data is transmitted from modules at the broadcast rate and the programmed averaging that
was programmed using the Configuration Software. This transmitted data can then be
further averaged before being displayed on the displays. Separate averaging can be
programmed for the upper display and the lower display.

The averaging is programmed with values from 0.001 (heavy averaging) to 1.000 (no
averaging). The default is 1.000. The averaging is performed as follows:

DisplayedValuet+1 = α x Parametert+1 + (1 – α) x DisplayedValuet
where:

DisplayedValuet+1 = the new displayed value

α = The user-programmable averaging.
 Range: 0.001 (heavy averaging) to 1.000 (no averaging).

Parametert+1 = the latest value transmitted by the module

DisplayedValuet = the previous displayed value

The selected display averaging does not affect the module’s CAN transmission rate or
averaging.

 16

dISP (Display) Setup Option

In dISP setup, the parameters to be displayed are selected. Only parameters selected to be
transmitted by the Configuration Software can be displayed.

Here is an example of setting the parameter to be displayed on the upper display:

1. Press the SYS key until “MOd” is displayed.
2. Press the ↓ key until “dISP” is on the top display. Then press the ENT key.
3. Press the ↓ key until desired parameter name is displayed. See Tables 2 and 3. Then

press the ENT key.
4. Press SYS to return to RUN mode.

CONF (Configure) Setup Option

CONF setup appears at the end of the setup list on the lower display. To enter CONF, press
the SYS key until “MOd” appears on the upper display, press the ↓ key until “CONF”
appears on the bottom display, and then press the ENT key. CONF is for global dashCAN
setup.

 LEdS

The display intensity is programmable. Press the ENT key when “LEdS” appears on the
lower display, press the ↑ or ↓ keys until the display intensity is suitable, press ENT, and
press SYS to return to RUN mode.

 LOCK

“LOCK” locks the MOd, RATE, dISP, and LEdS setup. This stops unauthorized
modification of the display. Refer to Appendix E for more information.

 17

Appendix A: appsCAN Kit Contents

 18

The appsCAN Kit consists of:

 Description P/N Quantity

1. appsCAN Control Module 02-05 1
2. Left (gray) connector with 300mm pigtails 11-22 1
3. Right (black) connector with 300mm pigtails 11-23 1
4. Flexi-Eurofast Cable 09-04 (0.3m) 1
5. Eurofast “T” 09-05 1
6. Eurofast Terminating Resistor 09-06 1
7. 2m Eurofast 12mm Cable 09-02 1
8. DC Power Cable, DB9F, Banana 11-02 1
9. appsCAN Manual and Configuration software CD 13-01 1

Optional Cable Components:

1. Connector Kit 11-24 1

2 connectors, 2 locks, 24 terminals, 12 plugs

Note: Left (gray) connector is Deutsch P/N DTM06-12SA
 Right (black) connector is Deutsch P/N DTM06-12SB
 Lock for connectors is Deutsch P/N WM12S (2 required)
 Terminals are Deutsch P/N 0462-201-2031
 Plugs are Deutsch P/N 0413-204-2005
 Crimper is Deutsch P/N HDT-48-00

 All connectors, terminals, plugs, and crimper are available from Deutsch, Inc.
 In the U.S.A., Deutsch products available from Ladd 1-800-223-1236.

Optional Power Supply:

1. AC/DC Power Supply, Universal 24VDC @ 4.2A 04-01 1

(requires P/N 11-17 Deutsch DTM3M to DB9F)

Optional CAN Adapter:

1. Kvaser Leaf Light, USB to CAN Adapter 13-02 1

 19

Appendix B: Module Stand-alone Mode and EIB Mode

CAN data from LambdaCAN and NOxCAN(g) modules can either be taken directly from the
modules themselves or from the CAN port of display heads connected to the modules. When
data is taken directly from one or more modules, each module must in Stand-alone mode.
When data is taken from one or more display heads of an EGR 5210, Lambda 5220, or EGR
5230 analyzer, each module must be in EIB mode.

Therefore, the module must be properly configured in Stand-alone mode or EIB mode
depending on how it will be used. When LambdaCAN and NOxCAN(g) modules are sold
alone, they are delivered in Stand-alone mode. When LambdaCAN and NOxCAN(g)
modules are sold as part of a NOx 5210, Lambda 5220, or EGR 5230 analyzer, they are
delivered in EIB mode.

To convert from one mode to the other requires software reprogramming of the module
followed by the installation (to set to Stand-alone) or removal (to set to EIB) of a jumper
inside the module.

 To convert a module from EIB to Stand-alone Mode

1. Take the nut off the end of the module. Use an 18mm socket without the wrench.

2. Release the two tangs at each side of the module.

 20

3. Slide the PCB out. Install a jumper on JP4.

4. Make sure both O-rings are on the threaded connector.

5. Slide the PCB into the enclosure until the two tangs “click”.

6. Put the nut on and tighten ONLY ½ turn from where it is seated. If this nut is

tightened too much, the connector will crack and the enclosure will not be sealed.

7. Connect the module to a power supply and a PC (via a CAN communication adapter)
using the cabling shown. A sensor does not have to be connected to the module.
Note that only one module is connected and a display head is not involved.

JP4

Jumper

 21

8. Start the Configuration Tool (software). Click on the “Module” tab.
 Select the CAN adapter being used. Then start the communication.

Figure A1: Module prepared for Reprogramming

P/N 11-02, DC Power Cable,
DB9F, Banana Plugs (shown),
or
P/N 11-01, DC Power Cable,

To power
Module Serial
Number

“T”

Resistor To CAN adapter
On PC

 22

 9. Click on the “Set to Stand-Alone Mode”. Wait for “Done” Message.
 Stop communication and exit program. The module is in Stand-alone mode.

 To convert a module from Stand-alone Mode to EIB Mode

1. Use the Configuration Tool (software) to “Set to EIB Mode”.
2. Remove the jumper on JP4 in the lambda module.

 23

Appendix C: Setting Up ETAS INCA for ECM Modules

Hardware Setup: Using ETAS ES591.1

1. Connect the power port to a power source between 6V and 32V.
2. Connect the Ethernet port directly to the Ethernet port on your PC. This port does not

use an internet/intranet connection like a router.
3. Connect either the CAN1 or CAN2 port to a CAN network (i.e. ECM modules or

display heads).

Software Setup: Using ETAS INCA V5.4.1, Hotfix 22, GM Install

1. Double click the INCA V5.4 icon to open the software.

2. Create a new Database. In the Database menu, select New. Give your database a
name (i.e. a folder name). In INCA, a Database means the current working directory.
Each project is created in a unique directory. When INCA is opened, it will default to
the last Database that was used.

3. Add a new Workspace. Right click on the “DEFAULT” folder icon, select Add >

Workspace. You can rename it to whatever you want.

4. Add a new dbc file for your project. Right click on the workspace you created in
step 3, select Add > Can-DB. Browse to your dbc file and click open. In this
example, we are using a file named test8mod.dbc. An INCA log window will pop up.
You can ignore this.

 24

5. Configure the hardware. Click on the icon for the workspace you created in step 3.

Open the Hardware Configuration icon under the section text “6. Hardware”. A
hardware configuration window will open.

 25

6. Select the hardware. In the hardware configuration window, right click the “HWK
Workspace” listed under the section text “1. Hardware Devices”, and select Insert.
Select the ETAS device you wish to use. In this example, we are using an ETAS
ES591.1. Expand the selection tree by clicking the “+” next to the hardware device
model. Expand the CAN selection and select CAN-Monitoring. Click OK.

7. Associate the dbc. When you clicked OK in the last step, another window will pop
up that will allow you to select a dbc that you have added to your workspace from
step 4. Expand the selection tree, select your dbc file, and click OK.

 26

8. Initialize hardware. The hardware is currently stopped, as indicated by the red stop
sign icon next to the selected hardware. You must initialize it before you can use it to
collect data. Click on the Initialize Hardware button on the upper tool bar and wait
for the hardware to complete its initialization. Another window will pop up to
confirm the device to connect to. Click OK.

9. Open an Experiment Environment. Click on the Experiment Environment button

on the upper tool bar to open an Experiment Environment. The Experiment
Environment is where you can setup the monitoring of the CAN bus. By default, the
Experiment Environment will be blank. You must select the variables from the dbc
file that you wish to monitor. Click on the Select Variables icon in the left hand tool
bar of the Experiment Environment.

 27

10. Select and Configure Variables. Select the variables that you wish to monitor in the
Experiment Environment. These variables names are based on the data found in the
dbc file. Click Configure.

11. Another window will pop up to configure each selected variable. You can configure,
for each variable, whether to record or simply display the data, how the data will be
displayed (graphs, charts, gauges, numeric, etc.). When complete, click OK. We
have left all configurations at default for this example.

12. A new sub-window will be added to the Experiment Environment. You do not need

to select all the variables you want to monitor all at once. You can click on the Select
Variables icon again at a later time to add more variables. Each set of variables you
add will be placed in a new sub-window unless it is configured to join an existing
sub-window. In this example, we have created a sub-window for each of the eight
modules in the dbc file.

 28

13. Start CAN monitoring. Right now there is no data displayed. That is because the
CAN monitoring is stopped. To begin CAN monitoring, click on the Start
Visualization icon (blue triangle) on the left hand tool bar. To stop CAN monitoring,
click the Stop Measuring icon (black square) on the left hand tool bar. To begin
recording the data, click on the Start Recording icon (red circle) on the left hand tool
bar.

 29

Appendix D: LOCKing and unLOCKing dashCAN

When dashCAN is locked, its setup cannot be modified.

 To LOCK dashCAN

1. Press SYS until “MOd” is displayed.
2. Press ↓ until “CONF” is displayed. Then press ENT.
3. Press ↓ until “LOCK” is displayed. Then press ENT.
4. “50” will be displayed. Press ↑ until “60” is displayed. Then press ENT.

dashCAN is now LOCKed.

 To unLOCK dashCAN

1. Press SYS until “LOCK” is displayed. Then press ENT.
2. “50” will be displayed. Press ↑ until “60” is displayed. Then press ENT.

dashCAN is now unLOCKed.

If an unauthorized person learns that 60 is the key number, contact ECM.

Appendix E: General Information

Voltage Input: 11 to 25 VDC @ 250 mA

Terminal Assignments on Eurofast Connector:

 1. Shield, 2. 11~28 VDC In, 3. Power Ground, 4. CAN_H, 5. CAN_L

Environmental: IP67, -55 to 125 °C, 100% humidity, module is sealed

Dimensions and Weight: 120 mm x 37 mm x 143 mm, 4 ¾” x 1 ½” x 5 ¾”, (W x H x D)
 244 gm, 8.7 oz

 30

Appendix F: Programming appsCAN via CAN Messages

1.0 Connecting the appsCAN module

1. Power and CAN connections to the module are made using the Eurofast 12mm connector

on the module. The power input requirement is 11 to 28VDC at 250mA. Multiple
modules can be connected together. All modules are configured to broadcast CAN
messages at the CAN bit rate of 500kbps. The maximum distance between any two nodes
on the CAN bus at this baud rate is 100m. Each end of the CAN bus must have a
terminating resistor of 121 Ohms.

2. Configuration software (ECM Configuration Tool) for the module is located on the CD.
This software allows the setup, configuration, monitoring, and recording of data using
supported CAN adapters.

3. You can lengthen the power wires on the DC Power Cable (P/N: 11-01 or 11-02) but use
large gauge wire and make sure that the voltage at the power terminals of the supplied
harness is at least 11V. You can lengthen the CAN communication wires using Eurofast
12mm cable. Eurofast 12mm cable was designed specifically for CAN communication
and along with additional “Tees”, allows you to easily build long and reliable CAN
networks.

4. The appsCAN broadcasts several messages on the CAN bus using the CANopen
protocol. Each message has an identifying number known as the CAN identifier
(CANid). Since multiple modules can be placed on the same CAN bus, each module on
the bus also has an identifying number known as the node identifier (NID). The allowable
range for the NID is 0x01 to 0x7F. When connecting other non-ECM devices on the
same CAN bus, ensure that the following CANids are not used:

 Message type CANid (hex)
 NMT 0x00
 Emergency 0x80 + NID
 TPDO1 0x180 + NID
 RPDO1 0x200 + NID
 TPDO2 0x280 + NID
 RPDO2 0x300 + NID
 TPDO3 0x380 + NID
 RPDO3 0x400 + NID
 TPDO4 0x480 + NID
 RPDO4 0x500 + NID
 SDO Tx 0x580 + NID
 SDO Rx 0x600 + NID
 Heartbeat 0x700 + NID
 LSS 0x7E4, 0x7E5

Note this list applies to EACH ECM module on the CAN bus.

 31

2.0 Getting Information from the appsCAN Module

As soon as power is attached to the appsCAN module, it will perform a POWER ON/RESET
sequence during which the bi-color LED will display a 2 second GREEN/BOTH/RED
pattern. After the POWER ON/RESET sequence is finished, the bi-color LED will display
GREEN continuously.

Approximately 5 seconds after power is applied, the unit will start broadcasting CAN
messages at a CAN baud rate of 500kbps. All CAN messages have an identifier (CANid) that
is related to the Node ID (NID) of the particular module. As shipped, the Node ID is pre-
assigned and is written on a label above the LED. The NID can be changed using the
supplied configuration software.

2.1 CANopen Message Types

i) HEARTBEAT (Broadcast rate = 0.5sec, DLC=1)

CAN id byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7

0x700+NID value

value = NMT STATE (see Section 8.0 for list of NMT States)

ii) ERROR (Broadcast rate = 0.250sec, DLC=6)

CAN id byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7
0x80+NID 0x00 0xFF 0x81 lo byte 0x00 0x00

lo byte = ECM Error Code (0x00 = Data valid, see Table 3 in “Producing a .dbc File”
section)

iii) TRANSMIT PROCESS DATA OBJECT [TPDO] (Broadcast rate = 0.005sec, DLC=8)

TPDO1 CAN id byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7
0x180+NID VRF1 (V) AIN1 (V)

TPDO2 CAN id byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7
0x280+NID VRF2 (V) VSW (V)

TPDO3 CAN id byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7
0x380+NID VRF3 (V) VEXC (V)

TPDO4 CAN id byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7
0x480+NID VRF4 (V) TEMP (degC)

The table above shows the default TPDO assignments. Note that all TPDOs are enabled (see
Sections 6.8 Enable TPDO, 6.9 Disable TPDO, and 6.10 TPDO Mapping). Table 2 in “Data

 32

Sent to (RPDO) and from (TPDO) Module” section contains a list of all available TPDO
parameters.

Each module can transmit up to four TRANSMIT PROCESS DATA OBJECTS (TPDO) at
the programmed TPDO broadcast rate (see Section 6.7 to determine minimum broadcast
rate). A TPDO contains two data values; each corresponds to a measured parameter (e.g.
VSW, AIN1, VRF1, etc). These data values are referred to as PROCESS DATA OBJECTS
(PDO). Each PDO is a single precision 32 bit floating point number that conforms to the
IEEE-754 standard. All TPDO data is transmitted on the CAN bus least significant byte first
(Intel format).

The NID, TPDO Broadcast rate and TPDO mapping can be changed by the user.

Example: The following data was transmitted by the module with NID = 0x10 on TPDO1

and contains 2 PDOs, VRF1 and AIN1.

TPDO1 CAN id byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7
0x190 0xA0 0x1A 0x4B 0x41 0x79 0x58 0xC0 0x3F

VRF1 = 0x414B1AA0 = 12.694
AIN1 = 0x3FC05879= 1.5027

Configuring which PDOs are transmitted in a particular TPDO is also known as TPDO
MAPPING and can be set by the user (see Section 6.10 TPDO Mapping).

iv) RECEIVE PROCESS DATA OBJECT [RPDO] (DLC=8)

RPDO1 CAN id byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7
0x200+NID AO1V (V) PWM1 (%)

RPDO2 CAN id byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7
0x300+NID AO2V (V) PWM2 (%)

RPDO3 CAN id byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7
0x400+NID AO3V (V) PWM3 (%)

RPDO4 CAN id byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7
0x500+NID AO4V (V) PWM4 (%)

The table above shows the default RPDO assignments. Note that all RPDOs are enabled (see
Sections 6.11 Enable RPDO, 6.12 Disable RPDO, and 6.13 RPDO Mapping). Table 2 in
“Data Sent to (RPDO) and from (TPDO) Module” section contains a list of all available PDO
parameters.

Each module can receive up to four RECEIVE PROCESS DATA OBJECTS (RPDO). An
RPDO contains two data values; each corresponds to a commanded parameter (e.g. AO1V,
AO1%, PWM1, etc). These data values are referred to as PROCESS DATA OBJECTS
(PDO). Each PDO is a single precision 32 bit floating point number that conforms to the

 33

IEEE-754 standard. All RPDO data is transmitted on the CAN bus least significant byte first
(Intel format).

The NID and RPDO mapping can be changed by the user.

Example: The following data was sent to the module with NID = 0x10 on RPDO1 and
 contains 2 PDOs, AO1V and PWM1.

TPDO1 CAN id byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7
0x210 0xA0 0x1A 0x4B 0x41 0x79 0x58 0xC0 0x3F

AO1V = 0x40900000 = 4.50
PWM1 = 0x42960000 = 75

Configuring how each PDO in a particular RPDO is interpreted by the module is also known
as RPDO Mapping and can be set by the user (see Section 6.13 RPDO Mapping).

 34

3.0 Writing to the appsCAN Module (SDO Write)

Configuration of the appsCAN module is performed by writing to the Object Dictionary
(OD) and by issuing ECM CANopen OS Commands (OS Command). Both of these actions
are implemented using a Service Data Object Expedited Write (SDO Write). The format is as
follows:

SDO Write Tx
CAN id

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7

0x600+NID Size OD lo OD hi Sub Data0 Data1 Data2 Data3

Size = 0x2F (1 byte write)
 0x2B (2 byte write)
 0x23 (4 byte write)

OD lo = low byte of OD address
OD hi = hi byte of OD address
Sub = Subindex of OD address
Data0 always contains the Least Significant Byte (LSB) of the data to be written to the OD.

A SDO Write will generate the following reply:

SDO Write Rx
CAN id

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7

0x580+NID 0x60 OD lo OD hi Sub

Example: Write a 2 byte integer = 0x204 to OD address 0x5017 subindex 0 in the module

with NID = 0x10.

SDO Write Tx
CAN id

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7

0x610 0x2B 0x17 0x50 0x00 0x04 0x02

The module will reply as follows:

SDO Write Rx
CAN id

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7

0x590 0x60 0x17 0x50 0x00

 35

4.0 Reading from the appsCAN Module (SDO Read)

During configuration, it may be necessary to read certain locations in the Object Dictionary
(OD). This can be done with a Service Data Object (SDO) Read. The format for a (SDO
Read) is as follows:

SDO Read Tx
CAN id

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7

0x600+NID 0x40 OD lo OD hi Sub

OD lo = low byte of OD address
OD hi = hi byte of OD address
Sub = Subindex of OD address

A SDO Read will generate the following reply:

SDO Read Rx
CAN id

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7

0x580+NID Size OD lo OD hi Sub Data0 Data1 Data2 Data3

Size = 0x4F (1 byte response)
 0x4B (2 byte response)
 0x43 (4 byte response)

OD lo = low byte of OD address
OD hi = hi byte of OD address
Sub = Subindex of OD address
Data0 always contains the Least Significant Byte (LSB) of the data present at the OD address.

Example: Read OD address 0x5008 subindex 0x32 in the module with NID = 0x10.

SDO Write Tx
CAN id

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7

0x610 0x40 0x08 0x50 0x32

The module will reply as follows:

SDO Write Rx
CAN id

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7

0x590 0x4B 0x08 0x50 0x32 0xBC 0x02

OD address 0x5008, subindex 0x32 of the module with NID = 0x10 contains the 2 byte value
0x2BC.

 36

5.0 Identifying the appsCAN Module

Each appsCAN module can be uniquely identified by reading the following four parameters
in the OD:

i) Vendor ID (0x000001C6) located at OD address 0x1018, subindex 0x01
(4 byte integer/unsigned 32)

ii) Product Code (appsCAN = 0x00000009) located at OD address 0x1018
subindex 0x02 (4 byte integer/unsigned 32)

iii) Revision Number located at OD address 0x1018, subindex 0x03
(4 byte integer/unsigned 32)

iv) Serial Number located at OD address 0x1018, subindex 0x04
(4 byte integer/unsigned 32)

Furthermore, the hardware and software revision number can be found at the following
locations:

i) Hardware Revision is located at OD address 0x1009, subindex 0x00 (4 byte
string)

ii) Software Revision is located at OD address 0x100A, subindex 0x00 (4 byte
string)

 37

6.0 Commands to the appsCAN Module

6.1. Configure Activation of RPDOs

Send the following OS Command to configure the module to act on RPDOs immediately
after they are sent.

CANid byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7
0x600+NID 0x2F 0x23 0x10 0x01 0x33

Send the following OS Command to configure the module to act on RPDOs only after also
receiving to SYNC message (see “SYNC Messages” section).

CANid byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7
0x600+NID 0x2F 0x23 0x10 0x01 0x34

SYNC Messages
There are two different types of SYNC messages that can be transmitted. One applies only to
the module selected. The other is a global SYNC which synchronizes the RPDOs of all
modules on the bus configured to require a SYNC message.

To send a SYNC message to only one module, configure any one of the RPDOs for that
module to be the “SYNC” parameter, and transmit a non-zero value. Since RPDOs are sent
as a pair of parameters, the 2nd parameter you choose will also be applied. If you do not wish
to send a 2nd parameter, you can configure it as the “NULL” parameter. See Section 6.13
RPDO Mapping for details on how to map and send RPDOs.

To send a global SYNC message, send the following message. Note that no data is necessary
in the data bytes.

CANid byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7
0x80

6.2. Configure Analog Outputs (AO1, AO2, AO3, AO4)

Select Output Type
Each of the four analog outputs can be configured as absolute voltages from 0 to 5V or
ratiometrically as a percentage of a 0 to 15V reference input. These settings are controlled by
an 8-bit register that can be accessed by performing an SDO read or write to OD address
0x5023, subindex 0x00.

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
Reserved Reserved Reserved Reserved Aout4 Aout3 Aout2 Aout1

Aout#: 0 = configure channel as absolute voltage
1 = configure channel as ratio of the reference associated with this output (i.e. Aout1

uses the voltage reference Vref1).

 38

Example: Configure all analog channels as a ratiometric output of the reference.
CANid byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7

0x600+NID 0x2F 0x23 0x50 0x00 0x0F

Setting Default Output Values
Default analog output values are stored as single precision floating point numbers (IEEE-
754) in the module. These values are applied to the outputs on startup before any commands
are received. There are a set of default values for both absolute voltage and ratiometric
settings. The appropriate value will be used depending on the configuration selected for the
particular output. They can be accessed by performing an SDO read or write to the following
Object Dictionary addresses.

 OD
Address

OD
Subindex

Factory
Default

AO1V 0x5025 0x00 0V
AO2V 0x5025 0x01 0V
AO3V 0x5025 0x02 0V
AO4V 0x5025 0x03 0V
AO1% 0x5025 0x04 0%
AO2% 0x5025 0x05 0%
AO3% 0x5025 0x06 0%
AO4% 0x5025 0x07 0%

6.3. Configure PWM Resolution

The PWM frequency and duty cycle resolution can be set to either 8-bit or 16-bit. In 8-bit
mode, all four PWM channels can be used. In 16-bit mode, only PWM2 and PWM4 can be
used, PWM1 and PWM3 are disabled. In 8-bit mode, worst case resolution is 0.4% Duty
Cycle, 4 Hz. In 16-bit mode, worst case resolution is 0.008% Duty Cycle, 0.1 Hz. The worst
case occurs at highest frequencies.

Send the following OS Command to configure the module’s PWM outputs as 8-bit mode.

CANid byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7
0x600+NID 0x2F 0x23 0x10 0x01 0x35

Send the following OS Command to configure the module’s PWM outputs as 16-bit mode.

CANid byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7
0x600+NID 0x2F 0x23 0x10 0x01 0x36

 39

6.4. Configure PWM Outputs (PWM1, PWM2, PWM3, PWM4)

Select Output Type
There are three possible settings for each PWM output: pull-up resister, polarity, and pulse
mode. These settings are controlled by a 16-bit register that can be accessed by performing
an SDO read or write to OD address 0x5024, subindex 0x00.

bit 15 bit 14 Bit 13 bit 12 bit 11 bit 10 bit 9 bit 8
Pulse4 Pulse3 Pulse2 Pulse1 Reserved Reserved Reserved Reserved
bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

Polarity4 Polarity3 Polarity2 Polarity1 Pull-up4 Pull-up3 Pull-up2 Pull-up1

Pulse#: 0 = configure channel as a normal PWM.
 1 = configure channel as a one-shot pulse output.
 (see Section 6.5 Configure Pulse Mode Outputs for full details)
Polarity#: 0 = configure as active high. 100% duty cycle deactivates low-side driver and

output is held high, either by the pull-up resistor or an external load.
 1 = configure as active low. 100% duty cycle actives low-side driver and pulls

output to ground.
Pull-up#: 0 = configure as low-side driver. Pull-up resister is disabled.
 1 = configure as output with 1K pull-up resister to 5V.

Example: Configure all PWM channels as active high outputs with pull-up resisters enabled.

CANid byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7
0x600+NID 0x2B 0x24 0x50 0x00 0x0F 0x00

Set Default Frequency and Duty Cycle
Default frequency and duty cycle values are stored as single precision floating point numbers
(IEEE-754) in the module. These values are applied to the outputs on startup before any
commands are received. They can be accessed by performing an SDO read or write to the
following Object Dictionary addresses. Note that FRQA applies to PWM channel 1 & 2, and
FRQB applies to PWM channel 3 & 4.

 OD
Address

OD
Subindex

Factory
Default

FRQA (1&2) 0x5027 0x00 100Hz
FRQB (3&4) 0x5027 0x01 100Hz

PWM1 0x5026 0x00 0%
PWM2 0x5026 0x01 0%
PWM3 0x5026 0x02 0%
PWM4 0x5026 0x03 0%

 40

6.5. Configure Pulse Mode Outputs

These configurations only apply if the PWM output is configured as Pulse Mode (see Section
6.4 Configure PWM Outputs). Polarity and pull-up resister enables still apply in pulse mode.
There are three registers required to initiate a pulse signal: delay, pulse width, and status.

The configurations for pulse mode are located at the following Object Dictionary entries.

 OD
Address

 OD
Subindex

PWM1 0x5028 Status 0x00
PWM2 0x5029 Delay 0x01
PWM3 0x502A Pulse Width 0x02
PWM4 0x502B

Status: 0 = pulse has not started and is free for use.
 1 = pulse is in use and is in the “delay” phase. Do not write to related registers.
 2 = pulse is in use and is in the “on” phase. Do not write to related registers.
 This register also serves as the start command. Write 1 to this location to start a pulse.

A new pulse can only be started when the status is 0. Writing any other value has no
effect.

Delay: Specifies in milliseconds how long to wait after receiving the start command to begin the
pulse. This value is a 16-bit integer with a valid range between 1 and 60000.

Pulse Width: Specifies in milliseconds how long to hold the pulse on. This value is a 16-bit integer
with a valid range between 1 and 60000.

The procedure to start a pulse is as follows:

i) Check that a pulse has not already started by reading the status to make sure it is 0.
CANid byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7

0x600+NID 0x40 0x28~0x2B 0x50 0x00

ii) Perform an SDO write to OD address 0x5028~B, subindex 0x01 with delay value.
CANid byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7

0x600+NID 0x2B 0x28~0x2B 0x50 0x01 delay lo delay hi

iii) Perform an SDO write to OD address 0x5028~B, subindex 0x02 with pulse width value.
CANid byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7

0x600+NID 0x2B 0x28~0x2B 0x50 0x02 width lo width hi

iv) Perform an SDO write to OD address 0x5028~B, subindex 0x00 with the value 1.
CANid byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7

0x600+NID 0x2B 0x28~0x2B 0x50 0x00 0x01

 41

Example: Configure PWM3 of module with NID = 0x05 for pulse mode and start a pulse of 250ms
after a delay of 1000ms.

CANid byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7
0x605 0x2B 0x24 0x50 0x00 0x00 0x40
0x605 0x2B 0x2A 0x50 0x01 0xFA 0x00
0x605 0x2B 0x2A 0x50 0x02 0xE8 0x03
0x605 0x2B 0x2A 0x50 0x00 0x01

6.6. Changing the NID

The Node ID (NID) can be programmed from 0x01 to 0x7F (1 to 127). To change the NID,
several messages must be sent to the appsCAN module. This must be followed by a reset of
the module (that can be performed three different ways; see the following).

Start by sending the following message to place the module into pre-operational mode.

CAN id byte 0 byte 1
0x00 0x80 NID

The next message(s) place the module(s) into LSS (Layer Select Services) configuration
mode. If there is only one CANopen module on the CAN bus this process requires only one
message. If there are several CANopen modules on the same CAN bus the specific module
must be identified using Product Code, Revision Number and Serial Number, (these can be
found on a white label placed on the top of the plastic enclosure).

MULTIPLE MODULES ON BUS SINGLE MODULE ON BUS

The module will reply with byte 0 = 0x44 on CAN id 0x7E4 if it enters LSS configuration
mode successfully.

The next message sent contains the new NID as an unsigned hexadecimal character.

CAN id byte 0 byte 1
0x7E5 0x11 new NID

The module will reply with byte 0 = 0x11 and byte 1 = 0x00 on CAN id 0x7E4 indicating a
successful NID change.

CAN id byte 0 byte 1 byte 2 byte 3 byte 4 CAN id byte 0 byte 1
0x7E5 0x04 0x00 0x7E5 0x04 0x01
0x7E5 0x40 0xC6 0x01 0x00 0x00
0x7E5 0x41 Product Code
0x7E5 0x42 Revision Number
0x7E5 0x43 Serial Number

 42

The last message sent takes the module out of configuration mode.
CAN id byte 0 byte 1
0x7E5 0x04 0x00

After the NID has been successfully changed, the module enters pre-operational mode and
does not broadcast data. The module can be returned to broadcast mode 1 of 3 ways:

i) Power-cycle the module by disconnecting and reconnecting the power.
ii) A second method is to send a command instructing the module to perform a hard

reset (similar to power-cycling the module but software controlled).
CAN id byte 0 byte 1

0x00 0x81 NID

iii) A third method is to send a command instructing the module to reset the CAN
interface only.
CAN id byte 0 byte 1

0x00 0x82 NID

Example: Change the NID for the following module with multiple modules on the CAN bus.

CURRENT NID = 0x10 (16)
PRODUCT CODE = 0x09 (9)
REVISION NUMBER = 0x01 (1)
SERIAL NUMBER = 0x192 (402)
NEW NID = 0x1A (26)

MESSAGE SENT MODULE REPLY

Example: Change the NID for the only CANopen module on the CAN bus.

CURRENT NID = 0x10 (16)

CAN id byte 0 byte 1 byte 2 byte 3 byte 4 CAN id byte 0 byte 1
0x00 0x80 0x10

0x7E5 0x04 0x00
0x7E5 0x40 0xC6 0x01 0x00 0x00
0x7E5 0x41 0x09 0x00 0x00 0x00
0x7E5 0x42 0x01 0x00 0x00 0x00
0x7E5 0x43 0x92 0x01 0x00 0x00 0x7E4 0x44
0x7E5 0x11 0x1A 0x7E4 0x11 0x00
0x7E5 0x04 0x00
0x00 0x82 0x1A

 43

NEW NID = 0x1A (26)

MESSAGE SENT MODULE REPLY

6.7. Changing the TPDO Broadcast Rate

The data broadcast rate can be programmed from 5 ms to 65535 ms and applies to all TPDOs
that have been enabled (see Section 6.8 Enable TPDOs). It is an unsigned 16bit integer (2
bytes) written least significant byte (LSB) first (Intel format) to OD address 0x1800,
subindex 0x05. The format of the SDO Write to the appsCAN module is as follows:

CANid byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7
0x600+NID 0x2B 0x00 0x18 0x05 broadcast

rate lo
broadcast

rate hi

Example: Set TPDO broadcast rate to 500 ms (0x01F4) for the module with NID = 0x0F (15).

CANid byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7
0x60F 0x2B 0x00 0x18 0x05 0xF4 0x01

There is a minimum broadcast rate that is dependent on the number of modules transmitting
on the CAN bus and how many TPDOs have been enabled for each module. If the broadcast
rate is too fast the ECM Configuration Tool will not be able to identify or configure any of
the modules. The formula for calculating the minimum broadcast rate is as follows:

Minimum Broadcast Rate (ms) > Total number of TPDOs for all modules x 0.3125

Example: There are 8 modules on the CAN bus.

NID 0x01 has 3 TPDOs enabled
NID 0x02 has 1 TPDOs enabled
NID 0x03 has 4 TPDOs enabled
NID 0x04 has 2 TPDOs enabled
NID 0x05 has 4 TPDOs enabled
NID 0x06 has 4 TPDOs enabled
NID 0x07 has 4 TPDOs enabled
NID 0x08 has 4 TPDOs enabled

Minimum Broadcast Rate (ms) = (3 + 1 + 4 + 2 + 4 + 4 + 4 + 4) x 0.3125 = 8.125ms. Since
the broadcast rate is valid only in increments of 1ms, round 8.125ms up to the next integer
value; 9ms. Therefore no module can have a TPDO broadcast rate less than 9ms.

CAN id byte 0 byte 1 CAN
id

byte 0 byte 1

0x00 0x80 0x10
0x7E5 0x40 0x01 0x7E4 0x44
0x7E5 0x11 0x1A 0x7E4 0x11 0x00
0x7E5 0x04 0x00
0x00 0x82 0x1A

 44

6.8. Enable Transmit Process Data Object (TPDO)

There are four TPDOs; each can be individually enabled to transmit the mapped PDO data at
the broadcast rate. The following OD addresses are required to enable each TPDO.

TPDO EnableOD

Address
Transmit
CANid

TPDO1 0x1800 0x180 + NID
TPDO2 0x1801 0x280 + NID
TPDO3 0x1802 0x380 + NID
TPDO4 0x1803 0x480 + NID

To enable a TPDO, perform a SDO Write to the Enable OD Address for that particular
TPDO as follows:

CANid byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7

0x600+NID 0x23 EnableOD
Address lo

EnableOD
Address hi

0x01 Transmit
CANid lo

Transmit
CANid hi

0x00 0x40

Example: Enable TPDO4 for the module with NID = 0x20, (EnableOD Address = 0x1803,
 Transmit CANid = 0x480 + 0x20 = 0x4A0).

CANid byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7
0x620 0x23 0x03 0x18 0x01 0xA0 0x04 0x00 0x40

6.9. Disable Transmit Process Data Object (TPDO)

The following OD addresses are required to disable each TPDO.

TPDO EnableOD
Address

Transmit
CANid

TPDO1 0x1800 0x180 + NID
TPDO2 0x1801 0x280 + NID
TPDO3 0x1802 0x380 + NID
TPDO4 0x1803 0x480 + NID

To disable a TPDO, perform a SDO Write to the Enable OD Address for that particular
TPDO as follows:

CANid byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7
0x600+NID 0x23 EnableOD

Address lo
EnableOD
Address hi

0x01 Transmit
CANid lo

Transmit
CANid hi

0x00 0xC0

 45

Example: Enable TPDO1 for the module with NID = 0x10, (EnableOD Address = 0x1800,
 Transmit CANid = 0x180 + 0x10 = 0x190).

CANid byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7
0x620 0x23 0x00 0x18 0x01 0x90 0x01 0x00 0xC0

6.10. Transmit Process Data Object Mapping (TPDO MAPPING)

Each TPDO transmits two PROCESS DATA OBJECTS (PDOs). Which PDOs are
transmitted by the module in a particular TPDO can be configured by the user.

Configuring a TPDO is a 4 step process:

i) Write a 0 to the TPDO Configuration OD Address, subindex 0x00.
ii) Enter the OD address of the 1st PDO.

(see Table 2 in “Data Sent to and from Module”)
iii) Enter the OD address of the 2nd PDO.
iv) Enter the number of PDOs in the TPDO.

Also, the following information is required to successfully map a TPDO.

TPDO ConfigOD
Address

EnableOD
Address

Transmit
CANid

TPDO1 0x1A00 0x1800 0x180 + NID
TPDO2 0x1A01 0x1801 0x280 + NID
TPDO3 0x1A02 0x1802 0x380 + NID
TPDO4 0x1A03 0x1803 0x480 + NID

Write a 0 to the TPDO Configuration OD Address, subindex 0x00 by performing a SDO
Write as follows:

CANid byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7
0x600+NID 0x2F ConfigOD

Address lo
ConfigOD
Address hi

0x00 0x00

Configure the 1st PDO by performing a SDO Write follows:

CANid byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7
0x600+NID 0x23 ConfigOD

Address lo
ConfigOD
Address hi

0x01 0x20 0x00 PDO OD
Address lo

PDO OD
Address hi

Configure the 2nd PDO by performing a SDO Write follows:

CANid byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7
0x600+NID 0x23 ConfigOD

Address lo
ConfigOD
Address hi

0x02 0x20 0x00 PDO OD
Address lo

PDO OD
Address hi

 46

Enter the number of PDOs in the TPDO by performing a SDO Write as follows:
CANid byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7

0x600+NID 0x2F ConfigOD
Address lo

ConfigOD
Address hi

0x00 0x02

Example: Map the PDO for AIN1 (V) and VRF3 (V) to TPDO2 for the module with NID =

0x02. (AIN1 PDO OD Address = 0x2027, VRF3 PDO OD Address = 0x2025,
ConfigOD Address for TPDO2 = 0x1A01)

CANid byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7
0x602 0x2F 0x01 0x1A 0x00 0x00
0x602 0x23 0x01 0x1A 0x01 0x20 0x00 0x27 0x20
0x602 0x23 0x01 0x1A 0x02 0x20 0x00 0x25 0x20
0x602 0x2F 0x01 0x1A 0x00 0x02

6.11. Enable Receive Process Data Object (RPDO)

There are four RPDOs; each can be individually enabled to be received by the module as the
mapped PDO data. The module will ignore sent RPDOs if it is disabled. The following OD
addresses are required to enable each RPDO.

RPDO EnableOD
Address

Receive
CANid

RPDO1 0x1400 0x200 + NID
RPDO2 0x1401 0x300 + NID
RPDO3 0x1402 0x400 + NID
RPDO4 0x1403 0x500 + NID

To enable a RPDO, perform a SDO Write to the Enable OD Address for that particular
RPDO as follows:

CANid byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7
0x600+NID 0x23 EnableOD

Address lo
EnableOD
Address hi

0x01 Receive
CANid lo

Receive
CANid hi

0x00 0x40

Example: Enable RPDO4 for the module with NID = 0x20, (EnableOD Address = 0x1403,
 Receive CANid = 0x500 + 0x20 = 0x520).

CANid byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7
0x620 0x23 0x03 0x14 0x01 0x20 0x05 0x00 0x40

 47

6.12. Disable Receive Process Data Object (RPDO)

The following OD addresses are required to disable each RPDO.

RPDO EnableOD
Address

Receive
CANid

RPDO1 0x1400 0x200 + NID
RPDO2 0x1401 0x300 + NID
RPDO3 0x1402 0x400 + NID
RPDO4 0x1403 0x500 + NID

To disable a RPDO, perform a SDO Write to the Enable OD Address for that particular
RPDO as follows:

CANid byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7
0x600+NID 0x23 EnableOD

Address lo
EnableOD
Address hi

0x01 Receive
CANid lo

Receive
CANid hi

0x00 0xC0

Example: Enable RPDO1 for the module with NID = 0x10, (EnableOD Address = 0x1400,
 Receive CANid = 0x200 + 0x10 = 0x210).

CANid byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7
0x620 0x23 0x00 0x14 0x01 0x10 0x02 0x00 0xC0

6.13. Receive Process Data Object Mapping (RPDO MAPPING)

Each RPDO is sent to the module with two PROCESS DATA OBJECTS (PDOs). Which
PDOs that the module interprets them as can be configured by the user.

Configuring a RPDO is a 4 step process:

i) Write a 0 to the RPDO Configuration OD Address, subindex 0x00.
ii) Enter the OD address of the 1st PDO.

(see Table 2 in “Data Sent to and from Module”)
iii) Enter the OD address of the 2nd PDO.
iv) Enter the number of PDOs in the RPDO.

Also, the following information is required to successfully map a RPDO.

RPDO ConfigOD
Address

EnableOD
Address

Receive
CANid

RPDO1 0x1600 0x1400 0x200 + NID
RPDO2 0x1601 0x1401 0x300 + NID
RPDO3 0x1602 0x1402 0x400 + NID
RPDO4 0x1603 0x1403 0x500 + NID

 48

Write a 0 to the RPDO Configuration OD Address, subindex 0x00 by performing a SDO
Write as follows:

CANid byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7
0x600+NID 0x2F ConfigOD

Address lo
ConfigOD
Address hi

0x00 0x00

Configure the 1st PDO by performing a SDO Write follows:

CANid byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7
0x600+NID 0x23 ConfigOD

Address lo
ConfigOD
Address hi

0x01 0x20 0x00 PDO OD
Address lo

PDO OD
Address hi

Configure the 2nd PDO by performing a SDO Write follows:

CANid byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7
0x600+NID 0x23 ConfigOD

Address lo
ConfigOD
Address hi

0x02 0x20 0x00 PDO OD
Address lo

PDO OD
Address hi

Enter the number of PDOs in the RPDO by performing a SDO Write as follows:

CANid byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7
0x600+NID 0x2F ConfigOD

Address lo
ConfigOD
Address hi

0x00 0x02

Example: Map the PDO for FRQA (Hz) and PWM1 (%) to RPDO2 for the module with
 NID = 0x02. (FRQA PDO OD Address = 0x202D, PWM1 PDO OD Address =

 0x2029, ConfigOD Address for RPDO2 = 0x1601)
CANid byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7
0x602 0x2F 0x01 0x16 0x00 0x00
0x602 0x23 0x01 0x16 0x01 0x20 0x00 0x2D 0x20
0x602 0x23 0x01 0x16 0x02 0x20 0x00 0x29 0x20
0x602 0x2F 0x01 0x16 0x00 0x02

6.14. Factory Reset

Parameters that are stored in non-volatile memory (EEprom) can be reset to a standard
configuration by issuing the ECM OS Command 0xDF (see Appendix B).

CANid byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7
0x600+NID 0x2F 0x23 0x10 0x01 0xDF

Issuing this command sets configuration and module parameters as follows:

1. Analog and PWM output configurations and default values return to factory settings.
2. Module output synchronization is disabled. RPDOs applied immediately when sent.
3. Expert mode disabled.
4. TPDOs are reset to factory default.
5. RPDOs are reset to factory default.
6. TPDO Broadcast rate set to 5ms (see section 8.6)

 49

7.0 ECM CANopen OS Commands

A user-specific CANopen OS Command to the appsCAN module is sent using an SDO
expedited write message in the following form. These commands apply only to the appsCAN
module and are listed on the following page:

CANid byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7
0x600+NID 0x2F 0x23 0x10 0x01 Command

Issuing a SDO Read of OD address 0x1023, subindex 0x02 will indicate the status of the
command.

CANid byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7
0x600+NID 0x40 0x23 0x10 0x02

The module will reply as follows:

CANid byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7
0x580+NID 0x4F 0x23 0x10 0x02 Status

The values that may be returned are listed below.

Status
0x00 Last command completed. No error occurred. No reply.
0x01 Last command completed. No error occurred. The reply can now be read.
0x02 Last command completed. Error occurred. No reply.
0x03 Last command completed. Error occurred. The reply can now be read.
0x04 - FE Reserved
0xFF Command is executing.

If there is a reply it can read using an SDO Read of OD address 0x1023, subindex 0x03.

CANid byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7
0x600+NID 0x40 0x23 0x10 0x03

The reply value will be located in byte 4 of the response to the SDO Read.

CANid byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7
0x580+NID 0x4F 0x23 0x10 0x03 Reply

The reply values and what they indicate are listed on the following page. Commands that are
written in ITALICS are valid only in Expert Mode.

 50

COMMAND VALUE REPLY DESCRIPTION
ResetAllFilters 0x15 Resets alpha for recursive average

to factory values

0x00 defAlphaOK
ExpertModeDisable 0x16 None This command removes the unit from

expert mode.

NoUpdateCanIdsOnNewNodeId0x17 None

UpdateCanIdsOnNewNodeId 0x18 None
ResetTPDOs 0x1F None Set all TPDOs as delivered from

factory.

DisableTPDOCOBReset 0x22 None Do not allow CAN id's to be set by
CANopen spec.
This affects TPDO's 1-4,
Heartbeat, Error messages.

EnableTPDOCOBReset 0x23 None CAN id's set by CANopen spec based
on module's NID.

ResetRPDOs 0x30 None Set all RPDOs as delivered from
factory.

DisableRPDOCOBReset 0x31 None Do not allow CAN id's to be set by
CANopen spec.
This affects RPDO's 1-4.

EnableRPDOCOBReset 0x32 None RPDO CAN id's set by CANopen spec
based on module's NID.

DisableSyncMode 0x33 None Disable updating outputs
synchronously to a sync message.

EnableSyncMode 0x34 None Enable updating outputs
synchronously to a sync message.

8bitPWM 0x35 None Use four 8-bit PWMs.
16bitPWM 0x36 None Use two 16-bit PWMs.
FactoryReset 0xDF None Set all EE values to std

configuration.

ExpertModeEnable 0xE0 None This command enables expert mode.
(ulng password required @ 0x52FF)

UseCalibratedValues 0xE5 None Use calibrated ADC/DAC values
UseUnCalibratedValues 0xE6 None Use raw uncalibrated ADC/DAC
UseProgrammedFilter 0xE7 None Use programmed recursive average

filter constants (std)

UseCalibrationFilter 0xE8 None Use slow recursive average filter
for calibration

 51

8.0 Heartbeat

A Heartbeat message is transmitted every 0.5 seconds by the appsCAN module. During
normal operation the module is in operational mode (NMT state = 0x05).

CAN id byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7
0x700+NID NMT

state

NMT state
0x00 Boot-up
0x04 Stopped
0x05 Operational
0x7F Pre-operational

 52

 53

EC DECLARATION OF CONFORMITY

We declare under our sole responsibility that the products:

AFM1540 Lambda Module
AFM1600 Lambda and O2 Analyzer
DIS1000 Display head
EGR 4830 Analyzer
NOx 5210 NOx Analyzer
Lambda 5220 Lambda Analyzer
EGR 5230 EGR Analyzer
LambdaCAN Lambda Module
LambdaCANc Lambda Module
NOxCAN NOx Module
NOxCANg NOx Module
NOx1000 NOx Module
dashCAN
DashCANc
appsCAN
gpioCAN
SIM300
SIM400
BTU200

To which this declaration relates are in conformity with the essential requirements of the following standards:
EN61326: 1997/A2: 2001 (Class A & Annex A)
EN61010-1: 2001 (Electrical Safety)

And therefore conform to the requirements of the following directives:
89/336/EEC Electromagnetic Compatibility (EMC)
72/23/EEC Low Voltage Directive (LVD)

Ronald S. Patrick
Vice President Sales
November 20, 2009

ECM ENGINE CONTROL
AND MONITORING

586 Weddell Drive, Suite 2
Sunnyvale, CA 94089-2134
USA
Phone: (408) 734-3433
FAX: (408) 734-3432
Email: sales@ecm-co.com
Web: www.ecm-co.com

 54

 Los Altos, CA 94023-0040 • USA • (408) 734-3433 • Fax: (408) 734-3432 • www.ecm-co.com

