

Lambda 5220

Single/Dual Lambda Analyzer

Instruction Manual

© COPYRIGHT 2007, 2014 by ECM: ENGINE CONTROL AND MONITORING. All Rights Reserved.
No part of this manual may be photocopied or reproduced in any form without prior written consent from ECM: ENGINE CONTROL AND MONITORING.
Information and specifications subject to change without notice.
Printed in the United States of America.

Table of Contents

Introduction	1
The Lambda 5220	1
Lambda 5220 Kit Contents	2
How to Use	4
Hooking up the Lambda 5220	4
Mounting the Lambda Sensor and Pressure Sensor	10
Front Panel and the "SYS" Key	11
MOd (Module) Setup Option	13
RATE Setup Option	13
FUEL Setup Option (H:C, O:C, N:C, H2)	13
AOUT (Analog Output) Setup Option (A1 to A6)	13
dISP (Display) Setup Option (P1 to P8)	16
CAL (Calibrate) Setup Option (O2, P, AVG, SKEW)	16
CONF (Configure) Setup Option (LEdS, 1V4V, CAN, LOCK, FACT)	19
Specifications and Limits	21
Measurements and Accuracies	21
Sensor Limits and Specifications	21
Output Specifications	23
General Specifications	24
Appendices	25
A. 5200 Series Instruments Parts List	25
B. Module EIB Mode and Stand-alone Mode	31
C. Error Codes and Troubleshooting	35
D. Calculating the %O ₂ in Air	36
E. LOCKing and unLOCKing Display Head	37
F. Using the Configuration Software	38
G. Setting up ETAS INCA for ECM Analyzers	41
H. Setting up ATI Vision for ECM Analyzers	47
I. Using the Lambda (O2) Sensor Simulator	54
Safety Warnings	55
Warranty and Disclaimers	56

Introduction

The Lambda 5220

The Lambda 5220 is a powerful, "next generation" wideband lambda and O₂ analyzer that packs the following features into a small and easy-to-use package:

- Single or dual channel lambda sensor operation
- Lambda 5220 systems can be linked together for multi-cylinder monitoring
- Displays in λ (Lambda), AFR (Air-Fuel Ratio), Φ (Equivalence Ratio), ${}^{\circ}O_2^{-1}$, and FAR² (Fuel-Air Ratio) units

%O₂¹: 0.0 to 25.0 FAR²: 27 to 1667

- Uses NTK (NGK Spark Plug) and Bosch lambda sensors
- Pressure compensation³ for λ , AFR, Φ , %O₂, and FAR
- Can specify any fuel type by H:C, O:C, and N:C ratios, including H₂
- Exhaust pressure measurement range³: 0 to 517 kPa (75 Psia)
- All lambda and pressure³ sensor parameters available for display and output
- Easy lambda sensor calibration using ambient air
- Calibration data for lambda sensor stored in sensor's connector
- Calibration data for pressure sensor stored in sensor's connector⁵
- Six programmable 0 to 5 VDC analog outputs
- CAN output and .dbc generation software
- Up to 100 m between lambda sensor and display possible
- "Lockout" feature for front panel of display
- Power on/off can be controlled by external "key" signal
- 11-28 VDC and 95-250 VAC⁴ operation

Lambda 5220 analyzers can use either LambdaCAN or LambdaCANp modules. LambdaCAN modules use 4-terminal pressure sensors and LambdaCANp modules use 8-terminal pressure sensors with the pressure sensor's calibration data stored in a memory chip in the connector. Lambda 5220 analyzers with LambdaCANp modules are called Lambda 5220B analyzers.

¹ For stoichiometries richer than Lambda=1, negative %O₂s are displayed. This novel convention is sometimes used with lean-burn engines.

² FAR x 10000 is displayed. This is the most commonly used way to express FAR. For example, with an H:C=1.85 fuel, Lambda=1 is FAR=686.8.

³ Optional but required for diesel or lean-burn spark-ignition engines

⁴ With optional P/N 04-01 AC/DC Power Supply

⁵ For Lambda 5220 Analyzers using LambdaCANp modules (i.e. Lambda 5220B Analyzers)

Lambda 5220 Kit Contents

The following items are included with a single-channel, Lambda 5220 kit:

Item No.	Description	Part Number
1.	Lambda 5220 Display Head	01-02
2.	LambdaCAN Module, or LambdaCANp Module	02-01 02-08
3.	Lambda Sensor, NTK 6 ma, or Lambda Sensor, Bosch LSU 4.2, or Lambda Sensor, Bosch LSU 4.9, or Lambda Sensor, NTK 4 ma Others available, contact ECM	05-01 05-02 05-03 05-04
4.	Eurofast 12 mm Cable, 4 m	09-01
5.	Eurofast 12 mm Cable, 2 m	09-02
6.	Flexi-Eurofast 12mm Cable, 0.3 m, (3 required)	09-04
7.	Eurofast "T", (4 required)	09-05
8.	Eurofast Termination Resistor, (3 required)	09-06
9.	Lambda Cable, 1 m	10-02
10.	DC Power Cable, Banana Plugs	11-16
11.	Female Eurofast to DB9F	11-05
12.	Key-on Cable, 2 m	11-08
13.	5200 Series Analyzer and Module Manuals and Configuration Software, CD	13-01

For pressure-compensation, these additional items are included (per Lambda channel):

Item No.	Description	Part Number
1.	Pressure Sensor with 1/4" tube fitting (USA), or Pressure Sensor with 6 mm (Metric) tube fitting (4-terminal sensor for LambdaCAN module)	07-05 07-06
	Pressure Sensor with 1/4" tube fitting (USA), or Pressure Sensor with 6 mm (Metric) tube fitting (8-terminal sensor for LambdaCANp module)	07-10 07-11
2.	Module Y Cable (for LambdaCAN module) Module Y Cable (for LambdaCANp module)	10-21 10-34
3.	Pressure Cable, 1 m (for LambdaCAN module) Pressure Cable, 1 m (for LambdaCANp module)	10-04 10-35
4.	Pressure Line Assembly, 28", (USA) Pressure Line Assembly, 711 mm, (Metric)	12-08A 12-11A
For a dual-channel kit, the	ese additional items are included:	
1.	LambdaCAN Module, or LambdaCANp Module	02-01 02-08
2.	Lambda Sensor, NTK 6 ma, or Lambda Sensor, Bosch LSU 4.2, or Lambda Sensor, Bosch LSU 4.9, or Lambda Sensor, NTK 4 ma, or Others available, contact ECM	05-01 05-02 05-03 05-04
3.	Eurofast 12mm Cable, 2 m	09-02
4.	Flexi-Eurofast 12mm Cable, 0.3 m	09-04
5.	Eurofast "T"	09-05
6.	Lambda Cable, 1m	10-02

Note: If the second Lambda channel is pressure compensated, a set of the pressure-compensation items listed above are included.

Appendix A contains a list of all 5200 series instruments parts.

How to Use

Hooking up the Lambda 5220

The Lambda 5220 kit consists of 4 parts:

- 1. The display head
- 2. The module(s) 1
- 3. The sensor(s)
- 4. Cabling

The Lambda 5220 is unique in that it puts a control module close to the lambda sensor. There are several advantages of doing this; the main ones are: improvements in signal-to-noise ratio, multi-channel capability, simplified cabling, and an almost unlimited sensor-to-display head distance.

The cable between the display head and module(s) is called the EIB (ECM Instrument Bus) and carries signal and power. There must be a termination resistor at each end of the EIB. The EIB can be powered at either the module end (Figure 1) or the display head end (Figure 2). To minimize the power voltage drop on the EIB, it is preferable to power the EIB from the end closest to the module(s) because that is where most of the power is being consumed (by the lambda sensor).

Branches/drops to display head(s) and module(s) are made from tees attached to the EIB. Up to 32 display heads and modules (total) can exist on the same EIB. The EIB cable, tees, and termination resistors are industry-standard Eurofast 12 mm. The EIB can be extended to a length of 100 m.

The Lambda 5220 can be turned on and off by the PWR button on the front of the display head or by a voltage signal (2.7 - 32 V) applied to the KEY connector on the back of the display head. The current requirements of this voltage signal are very low $(100 \, \mu\text{A})$.

After being turned on, the display head will test both displays and all leds and then show:

- 1. The display head's serial number
- 2. The version of the display head's software
- 3. The calibration date of the display head (MM.DD YYYY)
- 4. The serial number (see Figure B1) of the lambda module assigned to the upper channel and the serial number of the lambda module assigned to the lower channel. "...." means no lambda module has been assigned to that channel
- 5. "Rotating wheels" and sensor countdowns as they warm up
- 6. Parameter data

Figures 3 through 5 show details and part numbers of components in Figures 1 and 2. Optional components are also shown.

¹ Modules can be setup in EIB Mode or Stand-alone Mode. When the modules are used with a display head, they must be in EIB mode. See Appendix B for more information.

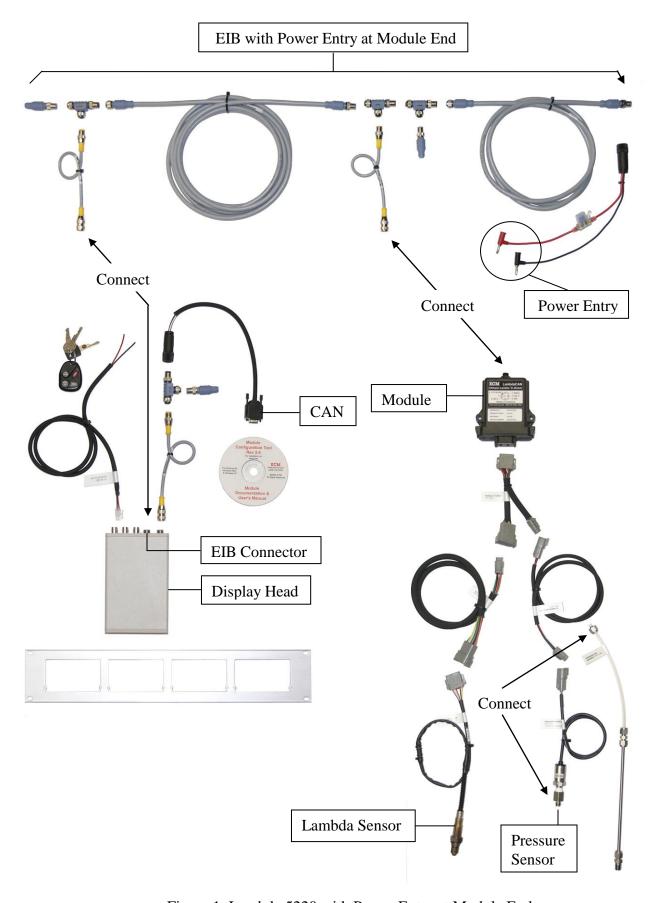


Figure 1: Lambda 5220 with Power Entry at Module End

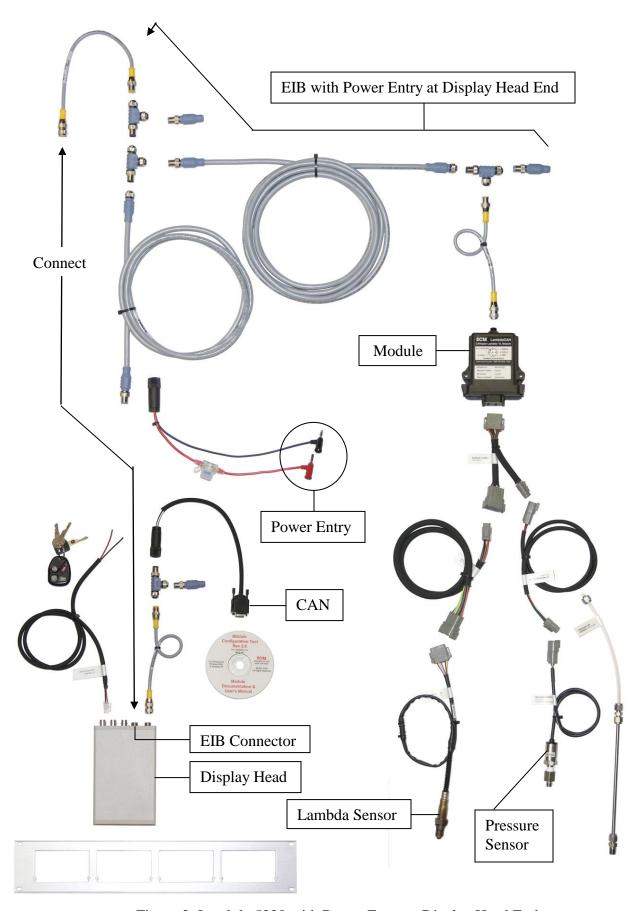


Figure 2: Lambda 5220 with Power Entry at Display Head End

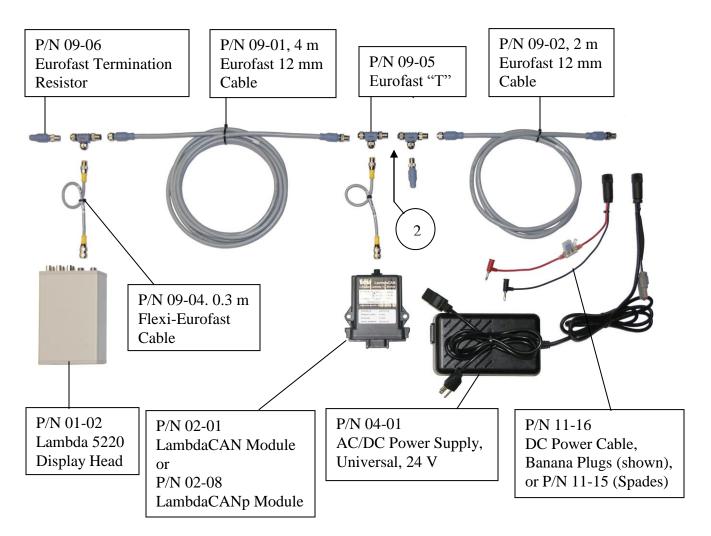


Figure 3a: Part Numbers of Components on EIB

Figure 3b: Add above in Location "2" for Second Lambda Channel

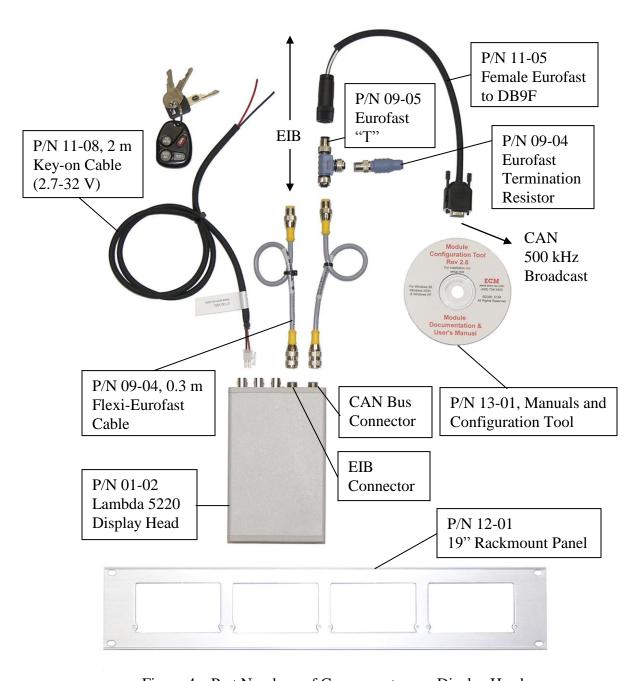


Figure 4a: Part Numbers of Components near Display Head

Figure 4b: Front and Back of Display Head

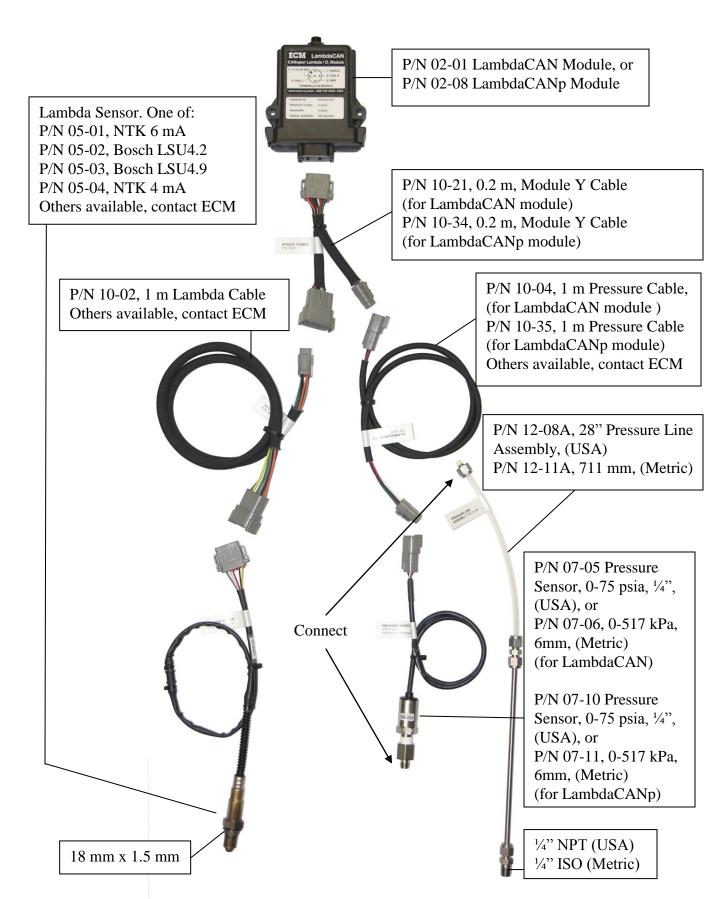


Figure 5: Part Numbers of Components near Module

Mounting the Lambda Sensor and Pressure Sensor

♦ Lambda Sensor

- Thread is 18 mm x 1.5 mm
- Mount between 300 mm from exhaust valve and ten exhaust diameters upstream of exhaust end.
- Do not exceed 850 °C exhaust gas temperature at location of sensor.
- Mount where condensed material will not collect on sensor.
- Mount upstream of any exhaust catalyst.
- Run tap into thread into mounting boss after welding and occasionally to clean threads.
- Put antiseize on threads and tighten sensor to less than 40 ± 4 Nm $(30 \pm 3 \text{ ft-lbf})$.
- Occasionally clean threads on sensor with small metal brush.
- Do not operate engine with lambda sensor not being powered. This may permanently damage them.
- Route lambda sensor cable away from hot, moving, sharp, or high voltage (spark) wires.

♦ Pressure Sensor

- Do not mount pressure sensor directly to exhaust or it will overheat and fail. Always use the supplied stainless steel/teflon pressure line assembly (P/N 12-11a (Metric) or 12-08a (USA)) between the engine's exhaust system and the pressure sensor. The stainless steel end goes towards the engine. Put antiseize on the threads.
- Do not modify the length or diameter of the pressure line assembly.
- Thread on pressure line assembly is ½" ISO or ¼" NPT (USA).
- Measure pressure within 50 mm of lambda sensor.
- Locate pressure sensor where temperature is between -20 and 80 °C.
- Do not allow condensed material to collect in pressure line assembly.
- Run tap into threads in mounting boss after welding and occasionally to clean threads.
- Route pressure sensor cable away from hot, moving, sharp, or high voltage (spark) wires.

Front Panel and the "SYS" Key

The Lambda 5220 display head can be thought of as two single-channel display heads in one package. One lambda module can be assigned to the upper display, upper four leds, and analog outputs 1, 2, 3 (i.e. the upper channel) and a second lambda module can be assigned to the lower display, lower four leds, and analog outputs 4, 5, 6 (i.e. the lower channel). Or one lambda module can be assigned to both channels. If no module is assigned to a channel, "...." appears on that channel's display. More than two lambda modules can exist on the EIB but a given display head can only show data from two of them. Adding another display head to the EIB will allow data from another two lambda modules to be displayed.

The display head has two modes of operation: RUN (when measurements or error codes are displayed) and SYS (where the instrument is set-up). The SYS key toggles between the modes.

When in RUN mode, the parameter being displayed is indicated by leds to the right of the display. There are four leds for each display and each led can be red or green. The first four parameters (λ , AFR, Φ , %O₂) are fixed and the second four (P1, P2, P3, P4) are programmable from the list of parameters in Table 2. The \uparrow and \downarrow keys select which of the eight parameters is displayed (unless the display is LOCKed, see below).

While in RUN mode, pressing the ENT key will toggle between the \uparrow and \downarrow keys changing parameters on one channel's display to changing parameters on the other channel's display.

In RUN mode, four things other than data can be displayed:

- 1. "ERR" and "####" where "####" is an error code. See Appendix C.
- 2. "...." which means that a lambda module has not been assigned to that channel. See MOd Setup Option.
- 3. "---" which means that the display head has an internal problem.4. "XXXX" which means that the display is not receiving any data.
- 5. "Rotating wheels" and sensor countdowns as they warm up.

When first entering SYS mode, either "MOd" will be on the upper display or "LOCK" will be on the lower display. If "MOd" is displayed, the \uparrow and \downarrow keys will roll through the setup options (see Table 1). First the options for the upper channel are shown on the upper display, followed by identical options for the lower channel on the lower display, ending with the global CONF (Configuration) setup. Pressing the ENT key will select the displayed setup option and allow its programming.

If "LOCK" is displayed, the display head has been locked and neither the parameters displayed nor the instrument setup can be changed until it is unlocked. Appendix E describes how to LOCK and unLOCK the display head.

Setup Option	n Level 1	Level 2	Function
MOd			Select module s/n [NONE]
RATE			Set display update rate [FAST]
FUEL			Program fuel H:C,O:C,N:C and if H ₂ [1.85,0,0,NO]
AOUT	A2 (upp A3 (upp A4 (low A5 (low	per channel) per channel) per channel) per channel) per channel) per channel)	Program analog output 1 [LAM,0V5V,0.400,25.00] Program analog output 2 [AFR,0V5V,6.000,364.00] Program analog output 3 [O2,0V5V,-25.00,25.00] Program analog output 4 [LAM,0V5V,0.400,25.00] Program analog output 5 [AFR,0V5V,6.000,364.00]
dISP	P1 (upp P2 (upp P3 (upp P4 (upp P5 (low P6 (low P7 (low	rer channel) er channel)	Program analog output 6 [O2,0V5V,-25.00,25.00] Program upper display parameter P1 [FAR] Program upper display parameter P2 [P] Program upper display parameter P3 [O2] Program upper display parameter P4 [O2] Program lower display parameter P5 [FAR] Program lower display parameter P6 [P] Program lower display parameter P7 [O2] Program lower display parameter P8 [O2]
CAL	O2	SPAN FACT AGEF EXIT	Calibrate lambda sensor Reset lambda sensor to factory calibration Show age factor for lambda sensor
	P AVG	UNIT N, C ILAM PLAM	Choose pressure units [KPA] Enter pressure sensor calibration numbers (for LambdaCAN modules only) Program Ip1,%O ₂ ,λ,AFR,Φ,FAR averaging [0.375] Program P (pressure) averaging [0.375]
	SKEW	EXIT P AFR PHI (Φ) FAR LAM (λ) O2	Program gain and offset modifier [1,0]
CONF	LEdS 1V4V CAN LOCK FACT	RST EXIT	Set display intensity [3333] Check analog outputs at 1V and 4V Program CAN addresses, produce .dbc file [1~5], program CAN transmit and baud rates Lock display Reset all but FUEL, N, C, ILAM, PLAM, and lambda sensor user calibration to [factory defaults]

MOd, RATE, FUEL, AOUT, dISP, and CAL appear on the upper display for the upper channel and the lower display for the lower channel. CONF appears just on the lower display and is for global display head setup. All entries must be followed by pressing the ENT key.

Table 1: Menu Tree for the Lambda 5220 [Default values given within square parentheses]

MOd (Module) Setup Option

In MOd setup, the serial number of the lambda module assigned to the upper or lower channel is entered. The serial number is written on a label on the module (see Figure B1). The module assigned to the upper channel will send information to the upper display and the analog outputs 1, 2, and 3. The module assigned to the lower channel will send information to the lower display and the analog outputs 4, 5, and 6. The same module can be assigned to both channels.

After entering MOd (i.e. press ENT when "MOd" is displayed), the serial numbers of the available modules on the EIB will displayed. Select using \(^1\) and \(^1\) followed by the ENT key.

RATE Setup Option

Different display update rates can be assigned to the upper and lower displays. The selected display update rate does not affect the analog output update rate or the CAN transmission rate.

FUEL Setup Option

Fuel H:C, O:C, and N:C ratios and whether or not the fuel is H_2 can be programmed. This can be different for the module assigned to the upper channel and the module assigned to the lower channel (unless the same module is assigned to both channels). The ENT, \uparrow , and \downarrow keys are used for programming. If you get into trouble when programming, press the SYS key twice to exit and re-enter setup to try again. Fuel H:C, O:C, and N:C ratios and whether or not the fuel is H_2 is information stored in the LambdaCAN module.

AOUT (Analog Output) Setup Option

The display head has six programmable analog outputs. Analog outputs 1, 2, and 3 are programmable on the upper display. Analog outputs 4, 5, and 6 are programmable on the lower display. Each output can be programmed as 0 to 5V, 0 to 1V, or as an EGO (exhaust gas oxygen sensor) simulated output.

The analog outputs are updated every 5 ms based on information sent to it by a lambda module every 5 ms. 5 ms is the maximum rate and is not programmable. The module averages the data before it is sent at this 5 ms rate. There is one programmable averaging filter for Ip1, λ , AFR, Φ , %O₂, FAR (ILAM) and one for pressure (PLAM). See **CAL Setup Option** (AVG Suboption) for more information.

The parameter selected to drive an analog output can be anything from Table 2 if the CONF MOdE has been set to ENHd (see **CONFIG Setup Option**) or a subset of Table 2 if the CONF MOdE has been set to STNd.

Here is an example of setting the analog output 2 (i.e. A2):

- 1. Press the SYS key until "MOd" is displayed.
- 2. Press the \downarrow key until "AOUT" is on the top display. Then press the ENT key.
- 3. Press the ↓ key until "A2" (analog output 2) is on the display. Then press the ENT key.

4. Press the ↑ and ↓ keys until the parameter (see Table 2) that will drive A2 is displayed. Then press the ENT key. Keep in mind that if CONF MOdE is set to STNd, only a subset of Table 2 will be available.

5. Press the ↑ and ↓ keys to select 0 to 5V, 0 to 1V, or EGO sensor simulated output. Then press the ENT key. EGO sensor simulation is only available on %O2, λ, AFR, ¢

and FAR parameters. If EGO is selected, go to step 8

6. When 0V is displayed, press ENT. Using the ↑, ↓, and ENT keys, set the parameter value that you want to result in an analog output voltage of 0V on analog output 2. The first time you do this, it may be a little tricky. You are setting one digit at a time and for some numbers, the display will shift to the left so you can set the right-most digits. If you get into trouble when programming, press the SYS key twice to exit and re-enter setup to try again.

7. When 5V (or 1V) is displayed, press ENT. Using the \uparrow , \downarrow , and ENT keys, set the parameter value that you want to result in an analog output voltage of 5V (or 1V) on

analog output 2.

- 8. If you want the EGO sensor simulated output, when EGO is displayed, press ENT. Using the \(\frac{1}{2}\), \(\frac{1}{2}\), and ENT keys, set the parameter value that you want the lean-to-rich (0V-to-1V) transition to occur at. 0V will be output when lean of the programmed value and 1V will be output when rich of the programmed value.
- 9. When "AOUT" is displayed, press SYS to return to RUN mode.

For analog outputs 4, 5, and 6, your entries will be shown on the bottom display.

Parameter		
Name		
Displayed	Full Parameter Name	Parameter Description
O2R	%O2real (%)	%O2 before addition of Delta O2 curve
IP1	Ip1 (mA)	Pressure compensated Lambda sensor pumping current
RPVS	RPVS (ohms)	Lambda sensor internal VS cell resistance
VHCM	VH Commanded (V)	Desired heater voltage commanded by the module
VS	VS (V)	Lambda sensor internal VS cell voltage
VP1P	VP1P (V)	Lambda sensor pumping voltage
VSW	Vsw (V)	Supply voltage measured at the module
VH	VH Measured (V)	Actual heater voltage at the module
TEMP	Circuit Board Temp (°C)	Temperature of the module circuit board
IP1R	Ip1raw (bits)	Lambda sensor pumping current (unsigned integer format)
PR16	Praw16 (bits)	16 bit Pressure sensor output voltage (unsigned integer format)
ERFL/UERF	Error bit flags (bits)	Module error flags (unsigned long format)
ERCd/UERC	ECM CANOpen Error Code	ECM CANOpen Error Code
PR10	Praw10 (bits)	10 bit Pressure sensor output voltage (unsigned integer format)
PCF	Pressure Correction Factor	Lambda sensor pressure compensation correction factor
PCFE		ECM diagnostic parameter
O2E		ECM diagnostic parameter
IP1E		ECM diagnostic parameter
PE		ECM diagnostic parameter
P	P (mmHg)	Pressure sensor measured pressure
LAMR	LAMBDAreal	Lambda before addition Delta Lambda curve
AFR	Air-Fuel Ratio	Air-Fuel ratio calculated using LAMBDA (see below)
PHI	PHI	PHI = 1/LAMBDA
FAR	FAR*10000	FAR = (1/AFR) * 10000
LAM	LAMBDA	Lambda after addition of Delta Lambda curve
O2	O2 (%)	%O2 after addition of user-defined curve
IP1X	Ip1 non Pcomp (mA)	Non-pressure compensated Lambda sensor pumping current
PVLT	P (V)	Raw volts from pressure sensor
PKPA	P (kPa)	Pressure sensor measured pressure (abs.) in kPa
PBAR	P (bar)	Pressure sensor measured pressure (abs.) in bar
PPSI	P (psi)	Pressure sensor measured pressure (abs.) in psi
PERF	Pressure error bit flags	Pressure Sensor bit flags (LambdaCANp only)
PERC	CANOpen error code	ECM CANOpen Pressure Error Code (LambdaCANp only)

Table 2: Parameter List for the Lambda 5220

dISP (Display) Setup Option

Parameter information from the lambda module assigned to the upper channel can be displayed as parameters P1, P2, P3, and P4. Parameter information from the lambda module assigned for the lower channel can be displayed as parameters P5, P6, P7, and P8.

The parameter selected as P1, P2, etc can be anything from Table 2 if the CONF MOdE has been set to ENHd (see CONFIG Setup Option) or a subset of Table 2 if the CONF MOdE has been set to STNd.

Here is an example of setting displayed parameter P2:

- 1. Press the SYS key until "MOd" is displayed.
- Press the ↓ key until "dISP" is on the top display. Then press the ENT key.
 Press the ↓ key until "P2" is on the display. Then press the ENT key.
- 4. Press the ↓ key until the parameter (see Table 2) that will be P2 is displayed. Then press the ENT key. Keep in mind that if CONF MOdE is set to STNd, only a subset of Table 2 will be available.
- 5. When "dISP" is displayed, press SYS to return to RUN mode.

If in the above example, displayed parameter P4 was being programmed, dISP, P4, and your entries will be shown on the bottom display.

CAL (Calibrate) Setup Option

♦ 02

Lambda sensors supplied with the Lambda 5220 are factory calibrated. This calibration is stored in a memory chip inside the sensor's connector. With use, lambda sensors can age requiring recalibration to maintain measurement accuracy. The SPAN function allows the user to recalibrate the sensor using ambient air. This user calibration is also stored in the sensor's memory chip and is used instead of the factory calibration. The FACT function cancels the user calibration resulting in the factory calibration being used.

SPAN (calibrate lambda sensor)

To perform a span:

- 1. A span should be performed after the lambda sensor has been on for at least 20 minutes.
- 2. Put the lambda sensor and pressure sensor (if so equipped) in ambient, stationary air. Pressure during lambda sensor calibration is required if the calibration is to be pressure compensated.
- 3. Calculate the $\%O_2$ in air. The $\%O_2$ of air with no humidity is 20.945. This percentage decreases with increased humidity. To calculate the %O2 in non-zero humidity air, refer to Appendix D. 20.7 is a common number.
- 4. Press the SYS key until "MOd" appears.
- 5. Press the ↓ key until "CAL" is on the display of the channel to be calibrated. Then press the ENT key.
- 6. With "O2" on the display, press the ENT key.

- 7. With "SPAN" on the display, press the ENT key.
- 8. Using the ↑ and ↓ keys, change the display to show the %O₂ in air determined in 3 (above). Press the ENT key.
- 9. When "CAL" is displayed, press SYS to return to RUN model. See AGEF (below).
- 10. The user calibration is written into the memory chip in the lambda sensor's connector and will be used to calculate $\%O_2$, λ , AFR, Φ , and FAR. If the lambda sensor is removed and installed on another module, this user calibration will go with the sensor and be used with the new module.

FACT (return to factory lambda sensor calibration)

To return to the factory calibration for the lambda sensor:

- 1. Make sure the lambda sensor is attached to the module.
- 2. Press the SYS key until "MOd" appears.
- 3. Press the ↓ key until "CAL" is on the display of the channel to be calibrated. Then press the ENT key.
- 4. With "O2" on the display, press the ENT key.
- 5. Press the \downarrow key until "FACT" is on the display. Press the ENT key. The user calibration of the lambda sensor is erased and the factory calibration will be used to calculate $\%O_2$, λ , AFR, Φ , and FAR. The lambda sensor age factor (AGEF) will be reset to "1.00".

AGEF (lambda sensor age factor)

After the lambda sensor has been user calibrated, data from this calibration is compared to data taken from the sensor when it was new. From this, a parameter (AGEF) is calculated that indicates the relative sensitivity of the sensor compared to when it was new. If AGEF is 1.00, the sensor's sensitivity has not changed. AGEF goes down with use. When the AGEF is 0.75 or below, it is recommended that the lambda sensor be replaced. AGEF is reset to "1.00" after the FACT option (see above) has been executed. The age factor is applicable when SPAN'd at zero altitude or when pressure compensation is used.

◆ P (only active for pressure-compensated systems)

UNIT

Pressure is displayed as absolute and the available pressure units are: mmHg, kPa, bar, and psi. The raw pressure sensor output voltage can also be displayed.

N, C (for LambdaCAN only, not LambdaCANp)

For Lambda 5220 analyzers that use LambdaCAN modules and are pressure-compensated, the pressure sensor calibration numbers (N and C) must be entered. The "N" and "C" values are written on a label on the pressure sensor.

For the case of LambdaCANp modules, the pressure sensor calibration numbers are stored in a memory chip inside the sensor's connector (similar to the Lambda sensor). These numbers are read by the LambdaCANp module as soon as the sensor is connected.

Pressure sensors are not user-recalibratable.

♦ AVG

Raw data is sampled from the lambda sensor pressure sensor every 5 ms. This data is averaged by the lambda module every 5 ms before being sent to the display head every 5 ms. For the parameters Ip1, $\%O_2$, λ , AFR, Φ , and FAR, the averaging filter (also called recursive averaging filter or digital low-pass filter) is ILAM. For pressure, the averaging filter is PLAM. How the averaging filters are used is shown by Equation 1. The averaging filters are user-programmable and can be assigned values from 0.001 (heavy averaging) to 1.000 (no averaging).

ParameterAverage_{t+5ms} = α x Parameter_{t+5ms} + $(1 - \alpha)$ x ParameterAverage_t [Equation 1]

where:

Parameter Average_{t+5ms} = the parameter average at time "t+5ms"

 α = ILAM (for Ip1, %O2, λ , AFR, Φ , FAR) or PLAM for pressure. These user-programmable filters range from 0.001 (heavy averaging) to 1.000 (no averaging).

ParameterAverage_t = the parameter average at time "t"

The default averaging filter values are given within square parentheses in Table 1. These values and the length of the pressure line assembly should not be modified without consulting ECM.

◆ SKEW

SKEW allows the parameters $\%O_2$, λ , AFR, Φ , FAR, and P (pressure) each to be modified by a programmable transform of the form:

ParameterSkewed = $M \times Parameter + B$ [Equation 2]

where:

ParameterSkewed = $\%O_2$, λ , AFR, Φ , FAR, or P after being skewed.

Parameter = $\%O_2$, λ , AFR, Φ , FAR, or P before being skewed.

M = Skewing gain. The default values for M are 1.000.

B = Skewing offset. The default values for B are 0.000.

The skewed parameters are displayed and output (i.e. analog outputs, CAN).

CONF (Configure) Setup Option

CONF setup appears at the end of the setup list for the lower channel. To enter CONF, press the SYS key until "MOd" appears on the upper display, press the ↓ key until "CONF" appears on the bottom display, and then press the ENT key. CONF relates to display head setup (as opposed to lambda module or sensor setup).

♦ LEdS

The display intensity is programmable. Press the ENT key when "LEdS" appears on the lower display, press the \uparrow or \downarrow keys until the display intensity is suitable, press ENT, and press SYS to return to RUN mode.

♦ 1V4V

This feature commands a 1 V (when "1V" is on lower display) or 4 V (when "4V" is on lower display) output on all six analog outputs. This feature is useful when troubleshooting the interface with an external data acquisition device.

◆ CAN

Figure 4a shows cabling connected to the back of the display head for CAN communication. Depending on where the display head appears in your CAN bus, the termination resistor may have to be present or removed.

The CAN data communicated is:

- 1. What is being sent to analog output 1
- 2. What is being sent to analog output 2
- 3. What is being sent to analog output 3
- 4. What is being sent to analog output 4
- 5. What is being sent to analog output 5
- 6. What is being sent to analog output 6
- 7. What is being sent to the upper display (but not averaged by display) 8. What is being sent to the lower display (but not averaged by display)
- 9. An error code for the upper channel. See Appendix C.
- 10. An error code for the lower channel. See **Appendix C**.
- 11. An auxiliary code for the upper channel.
- 12. An auxiliary code for the lower channel.

It is important to note that if a parameter that is being displayed is changed (by pressing the \tag{1} or \downarrow key), the CAN data will also be changed to that newly displayed parameter for 7 or 8 (above). Similarly for an analog output. LOCKing the display head can be used to avoid this problem.

The CAN data is broadcast at 500 kHz in the following	format:
---	---------

CANid	byte 0	byte 1	byte 2	byte 3	byte 4	byte 5	•	byte 7
CID1		s being sen					it to analog	
CID2	What is	s being sen	t to analog	output 3	What i	s being ser	it to analog	output 4
CID3	What is	s being sen	t to analog	output 5	What i	s being ser	it to analog	output 6
CID4	What	is being se	nt to upper	display	What is	being sent	to the low	er display
ERCd	Error c	ode for up	per display	/channel	Error c	code for lov	wer display	/channel
	Error	Error	Aux.	Pressure	Error	Error	Aux.	Pressure
	Code	Code	Code	Err Code	Code	Code	Code	Err Code
	Low	High		Low	Low	High		Low

¹ For LambdaCANp modules only.

Each of the eight parameters in CID1 to CID4 is a single-precision 32 bit floating point number that conforms to the IEEE-754 standard. All eight of these parameters are transmitted on the CAN bus least significant byte first (Intel format). Parameters 1 through 8 (everything except error codes) sent on the CAN bus are averaged ("AVG"d, see CAL Setup Option).

Error codes are transmitted with address ERCd. The error codes are 16 bit integers that refer to those listed in Appendix C. The error codes are transmitted on the CAN bus least significant byte first (Intel format). The auxiliary code is the countdown number appearing on the channel's display. If there is no error or active countdown, an error message is not broadcast.

Addresses CID1 through CID4 and ERCd are user programmable. Refer to **Appendix F** on how to program them and how to produce a .dbc file (which requires a PC running the supplied Configuration Tool Software"). This .dbc file can be used with programs accepting the VectorCAN .dbc format.

The rate at which CAN data is sent can also be programmed via the "RATE" parameter under "CAN". To program how often the CAN data is to be sent: enter SYS mode, ↓ down to "CONF", press the ENT key, ↓ down to "CAN", press the ENT key, ↓ down to "RATE", press the ENT key, then enter the rate in ms. The allowable range is 5ms to 9999ms with 5ms being the default.

The CAN baud rate is programmed via the "BAUd" parameter under "CAN".

♦ LOCK

"LOCK" locks the selection of displayed parameters and instrument setup. When locked, the display head can just be turned on and off. It cannot be modified unless unlocked. Refer to Appendix E for more information.

◆ FACT

"FACT" (in the **CONF Setup Option**) resets the display head to the default setup. The default setup is shown [in square parentheses] in Table 1. "FACT" (in the **CONF Setup Option**) does not reset FUEL, pressure sensor calibration numbers N and C, averaging filters ILAM and PLAM, nor does it cancel a user calibration of a lambda sensor. To cancel a user calibration of a lambda sensor use "FACT" in the CAL Setup Option.

Specifications and Limits

Measurements and Accuracies

Parameter	Range	Response Time	Accuracy
Lambda (λ)	0.4 to 25	< 150 ms ⁴	$\pm 0.6\%$ (at $\lambda=1$)
			$\pm 0.9\%$ (elsewhere)
AFR	6 to 364 ¹	< 150 ms ⁴	$\pm 0.6\%$ (at $\lambda=1$)
			$\pm 0.9\%$ (avg. elsewhere)
Equivalence Ratio (Φ)	0.04 to 2.5	< 150 ms ⁴	$\pm 0.6\%$ (at $\lambda=1$)
			$\pm 0.9\%$ (avg. elsewhere)
FAR	27 to 1667 ^{1,2}	$< 150 \text{ ms}^{-4}$	$\pm 0.6\%$ (at $\lambda=1$)
			±0.9% (avg. elsewhere)
$\%O_2$	-25 to 25% ³	< 150 ms ⁴	±0.1% (absolute)
Pressure	0 to 517 kPa/75 Psia	< 50ms ⁵	±0.25 Psia
			±1.7 kPa

See CAL Setup for more information.

Sensor Limits and Specifications

◆ Lambda Sensor

Exhaust Gas Temperature Range: 0 - 850 °C, 32 - 1562 °F

Maximum Exhaust Temperature: 950 °C, 1742 °F

Maximum Rate of Temperature Change: 50 °C/s, 122 °F/s

Fuel Composition:

H:C ratio range: 1.00 - 10.00, or Hydrogen (H₂)

O:C ratio range: 0.00 - 10.00 N:C ratio range: 0.00 - 1.00

gasoline: 1.70 < H:C < 2.10, O:C=0.0, N:C=0.0, (1.75 or 1.85 are commonly used)

methanol: H:C=4.0. O:C=1.0. N:C=0.0

¹ AFR and FAR range given for a fuel with an H:C ratio of 1.85.
² FAR x 10000 is displayed. This is the most commonly used way to express FAR. For example, with an H:C=1.85 fuel, Lambda=1 is FAR=686.8.

³ For stoichiometries leaner than Lambda=1, negative %O₂s are displayed.

This convention (i.e. negative %O2s) is sometimes used with engines when rich.

The response times are affected by averaging filter ILAM (for Ip1, %O₂, λ, AFR, Φ, FAR). See **CAL Setup** for more information.

The response times are affected by averaging filter PLAM (for P).

ethanol: H:C=3.0, O:C=0.5, N:C=0.0 propane: H:C=2.67, O:C=0.0, N:C=0.0 methane: H:C=4.0, O:C=0.0, N:C=0.0

Maximum allowable levels of fuel "Impurities":

Lead: 0.012 gm/gal., 0.003 gm/ltr.

Phosphorus: 0.0008 gm/gal., 0.00027 gm/ltr.

Sulfur: 0.035% by weight

Do not use the lambda sensor in a heavily-sooting or crankcase-oil-burning engine because these conditions will shorten the life of the sensor.

Thread Size: 18mm x 1.5 mm. Lightly coat with non-lead containing antiseize

compound. The lambda sensor's thread size is identical to that of the exhaust gas oxygen (EGO) sensors used in current production

automobiles with 3-way exhaust catalysts.

Hex Size: 22 mm

Tightening Torque: 40 ±4 Nm, 30 ±3 ft-lbf

♦ Pressure Sensor

Note: Must attach to engine via pressure sensor tubing only!

Do not directly attach to the exhaust or pressure sensor damage will result.

Diaphragm Material: Stainless steel

Maximum Pressure: 200 Psia, 1379 kPa (absolute)

Operating Temperature Range: -40 to 105 °C

Thread on Pressure Sensor: 1/4" NPT

Fitting on Pressure Sensor: Swagelok SS-400-7-4 to mate with ¼" tube (USA) or

Swagelok SS-6MO-7-4 to mate with 6 mm tube (Metric)

♦ Pressure Sensor Tubing

Note: Stainless steel end of tubing towards engine. Teflon end towards pressure sensor.

Mating Thread with Engine: 1/4" NPT (USA) or 1/4" ISO tapered (Metric)

Tubing Assembled Length: 28" (USA) or 711 mm (Metric)

Tubing Diameter: 1/4" (USA) or 6mm (Metric)

Nut, Front Ferrule, Back Ferrule at Pressure Sensor end of Tubing:

Swagelok SS-402-1, SS-403-1, SS-404-1 (USA) or Swagelok SS-6M3-1, SS-6M4-1, SS-6M2-1 (Metric)

Union between Stainless Steel and Teflon Tubing: Swagelok SS-400-6 (USA) or Swagelok SS-6MO-6 (Metric)

Fitting on Engine End of Tubing: Swagelok SS-400-1-4, ¹/₄" tube to ¹/₄" NPT (USA) or Swagelok SS-6MO-1-4RT, 6 mm tube to ¹/₄" ISO tapered (Metric)

Output Specifications

♦ Analog Outputs

Output Range (linearized in displayed units): 0 to 5 VDC, 20 mA max.

Output Impedance: $2.66 \text{ k}\Omega$

Bits Resolution: 12 bits

Update Rate: 5 ms

Isolation: Electrically isolated from power supply ground.

All analog output grounds common.

◆ CAN

Protocol: Broadcast

Rate: Programmable (5 ms default)

Speed: Programmable (500 kHz)

Isolation: Electrically isolated from power supply ground

General Specifications

♦ Power

DC: 11 to 28 VDC

Current Draw: 0.5 A (display), 1.2 A steady-state (per module and sensor),

On start-up, lambda sensor and module may draw as much as 4 A for 30 s.

Case Ground: The Lambda 5220 display head case is connected to power ground via a

 $2.15 \text{ k}\Omega\text{ resistor}.$

♦ Key-on Signal

"ON" Voltage Level: 2.7 to 32 VDC

Current Draw: 100 uA

♦ Environment

Display Head: -40 to 85 °C, 100% humidity non-condensing, display head is not sealed

Module: -55 to 125 °C, 100% humidity, module is sealed, IP67

♦ Dimensions and Weight

Display Head: 108 mm x 64 mm x 178 mm, 4 1/4" x 2 1/2" x 7", (W x H x D) 676 gm, 24 oz

Module: 120 mm x 37 mm x 143 mm, 4 ¾" x 1 ½" x 5 ¾", (W x H x D) 244 gm, 8.7 oz

Appendix A: 5200 Series Instruments Parts List

01 Display Heads (Just display head. Must add cables, etc.)

- 01-01 NOx 5210 (just head, no module, no cable, no sensor)
- 01-02 Lambda 5220 (just head, no module, no cable, no sensor)
- 01-03 EGR 5230 (just head, no module, no cable, no sensor)
- 01-04 dashCAN (includes cable and T)
- 01-05 dashCAN+ (6 analog outputs, includes cable and T)
- 01-06 dashCANc (includes cable and T)
- 01-07 NOx/NH3 (just head, no module, no cable, no sensor)
- 01-08 dashCAN2 (2 analog outputs, includes cable and T)

02 CAN Modules (just module)

- 02-01 LambdaCAN (just module, no sensor, no cables)
- 02-02 NOxCAN (for original sensor, just module, no sensor, no cables)
- 02-03 NOxCAN-G (for "G" sensor just module, no sensor, no cables)
- 02-04 LambdaCANc (just module, no sensor, no cables)
- 02-05 appsCAN (just module, no cables)
- 02-06 baroCAN (just module, no sensors, no cables)
- 02-07 NOxCAN-T (for "T" sensor, just module, no sensor, no cables)
- 02-08 LambdaCANp (just module, no sensor, no cables)
- 02-09 LambdaCANd (just module, no sensor, no cables)
- 02-10 gpCAN (just module, no cables)
- 02-11 COCO2CAN (just module, no sensor, no cables)

03 Simulators, Heater

- 03-01 LambdaCAN Sensor Simulator (just module, no cable)
- 03-02 NOx Sensor Simulator (just module, no cable)
- 03-03 Ceramic Sensor Heater (just module, no cable)
- 03-04 NOxg Sensor Simulator (just module, no cable)
- 03-05 NOxt Sensor Simulator (just module, no cable)
- 03-06 LambdaCANp Sensor Simulator (just module, no cable)

04 Power Supplies

- 04-01 AC/DC Power Supply, Universal, 24V, 4A
- 04-02 Vboost Supply, 10~14VDC to 24VDC @ 14.5A
- 04-03 30A AC/DC Power Supply, 24V, 100~240VAC
- 04-04 15A AC/DC Power Supply, 15V, 120VAC
- 04-05 60A AC/DC Power Supply, 15V, 120VAC

05 Linear O2 (Lambda) and CO/CO2 Sensors

- 05-01 NTK 6 mA
- 05-02 Bosch LSU4.2
- 05-03 Bosch LSU4.9

05-04 NTK 4 mA

05-05 Bosch LSU4.2, Type P

05-06 Delphi OSL

05-07 NTK 4mA Cofired (ZFAS-U2)

05-08 Bosch LSU4.9, Type P

05-09 Bosch ADV

05-10 NTK, 6mA, Type P

05-11 Bosch LSU4.2, Type PI (Intake)

05-12 CO, CO2

06 NOx and NH3 Sensors

06-01 NOx Original (use with NOxCAN)

06-02 NOx Type "G" (use with NOxCANg)

06-03 Calibrate NOx Sensor

06-04 Cal Sheet with NOx Sensor

06-05 NOx Type "T" (use with NOxCANt)

06-06 NOx/NH3 Sensor (use with NOx/NH3 5240)

06-07 NH3 Sensor

07 Sensors

07-01 Pressure, 0-75 psia, 1/4", (USA)

07-02 Pressure, 0-517 kPa, 6mm, (Metric)

07-03 Pressure, Type P, 0-75 psia, 1/4", (USA)

07-04 Pressure, Type P, 0-517 kPa, 6mm, (Metric)

07-05 Pressure, Type KP, 0-75 psia, 1/4", (USA)

07-06 Pressure, Type KP, 0-517 kPa, 6mm, (Metric)

07-07 RH (Humidity) Sensor, 1/4" NPT

07-08 Pressure (LambdaCANp, COCO2CAN, baroCAN only), 0-75 psia, 1/4", (USA)

07-09 Pressure (LambdaCANp, COCO2CAN, baroCAN only), 0-517 kPa, 6mm, (Metric)

07-10 Pressure (LambdaCANp, COCO2CAN, baroCAN only), Type KP, 0-75 psia, 1/4", (USA)

07-11 Pressure (LambdaCANp, COCO2CAN, baroCAN only), Type KP, 0-517 kPa, 6mm, (Metric)

07-12 Pressure (baroCAN only), Type KP, 10-20 psia, ¼", (USA)

07-13 Pressure (baroCAN only), Type KP, 70-140 kPa, 6mm, (Metric)

08 Actuators

08-01 Ceramic Sensor Heater Mount for 05-01,05-04,05-07,05-10,05-12,06-01,06-05,06-06 Sensors

09 Eurofast Cables, Ts, Term. Resistors, Connectors

09-01 4m Eurofast 12mm Cable

09-02 2m Eurofast 12mm Cable

09-03/n "n"m, Eurofast 12mm Cable

09-03/10 10m, Eurofast 12mm Cable

09-03/20 20m, Eurofast 12mm Cable

```
09-04 Flexi-Eurofast Cable, 0.3m
```

09-05 Eurofast "T"

09-06 Eurofast Termination Resistor

09-07 Eurofast Male Connector

09-08 8 Channel Eurofast Hub Block

09-09 Termination Resistor for Hub Block

09-10 CSM-Type Lemo Terminating Resistor

10 Sensor Cables

```
10-01 Module Y Cable (not LambdaCANp, COCO2CAN, baroCAN, Superseded by -21)
```

10-02 1m Sensor Cable, (12 term.)

10-02/25' Sensor Cable, (12 term., teflon)

10-03 2m Sensor Cable, (12 term.)

10-04 1m Pressure Cable (not LambdaCANp, COCO2CAN, baroCAN), (4 term.)

10-05 2m Pressure Cable (not LambdaCANp, COCO2CAN, baroCAN), (4 term.) append suffix SD to cable for Teflon (Severe Duty) Version

10-09 Adapter to use P/N 05-01 with AFM1000, M1200, etc

10-12 Adapter to Pressure Sensor Wires

10-14 Adapter to use P/N 2400E-1 sensor (CPC) with LCAN

10-16 Adapter to use P/N 2400E-1S sensor (Fischer) with LCAN

10-17 Adapter to use P/N 1001A-2 (Deutsch) with LCAN

10-21 Module Y Cable (not LambdaCANp, COCO2CAN, baroCAN)

10-26 1m Humidity Cable (baroCAN), (6 term.)

10-27 2m Humidity Cable (baroCAN), (6 term.)

10-30 Module Y Cable (for baroCAN only)

10-31 1m Extension Cable for 12 terminal Deutsch

10-32 2m Extension Cable for 12 terminal Deutsch

10-34 Module Y Cable (LambdaCANp, COCO2CAN only)

10-35 1m Pressure Cable (LambdaCANp, COCO2CAN, baroCAN only), (8 term.)

10-36 2m Pressure Cable (LambdaCANp, COCO2CAN, baroCAN only), (8 term.)

10-37 3m Sensor Cable, (12 term.)

10-38 3m Pressure Cable (LambdaCANp, COCO2CAN, baroCAN only), (8 term.)

10-39 1-to-4 Pressure Sensor Adapter (for /P kits only. Not for /PB kits)

10-40 3m Pressure Cable (not LambdaCANp, COCO2CAN, baroCAN), (4 term.)

10-41 3m Humidity Cable (baroCAN), (6 term.)

10-42A 1.5m LambdaCANp Cable, Lemos at Midpoint, Controller Side 10-42B 1.5m LambdaCANp Cable, Lemos at Midpoint, Sensor Side

11 Cables

- 11-01 DC Power Cable, DB9F, Spades
- 11-02 DC Power Cable, DB9F, Banana Plugs
- 11-03 DB9M to CSM Lemo F Adapter (CSM Upstream)
- 11-04 DB9M to ETAS Lemo Adapter
- 11-05 Female Eurofast to DB9F
- 11-06 Male Eurofast to CSM Lemo F Adapter (CSM Downstream)
- 11-07 In-Line Power Entry Cable
- 11-08 2m Key-on Cable
- 11-09 2m Heater Cable
- 11-10 2m Hub Power/Eurofast Harness
- 11-11 Simulator (SIM300, 400, 500, 600, 700, 800) Cable
- 11-14 BNC to Banana Cable
- 11-15 DC Power Cable, Spades
- 11-16 DC Power Cable, Banana Plugs
- 11-17 Deutsch DTM3M to DB9F
- 11-18 3m DB9 Cable, M-F
- 11-19 EIB Power Tap to Ceramic Sensor Heater Controller
- 11-20 25' DB9 M-F Cable
- 11-21 SIM-200 Calibration Kit
- 11-22 Left (gray) appsCAN Connector with 300mm Pigtail Wires
- 11-23 Right (blk) appsCAN Connector with 300mm Pigtail Wires
- 11-24 Connector Kit: 2 connectors, 24 terminals, 12 plugs
- 11-25 Male Eurofast to Braided Shield Ground
- 11-26 Boom Box Cable for CAN Products (80' CAN, 30' Power)
- 11-27 Boom Box to Hub Springy Cable (1m relaxed, 2m stretched)
- 11-28 Male Eurofast to DB9F
- 11-29 Simulator Power Cable
- 11-30 Simulator LSU4.9 Adapter Cable
- 11-31 Lemo to Eurofast Adapter Cable for LambdaCANc
- 11-32 M-F Eurofast Panelmount Connector
- 11-33 1m CSM F Lemo to DB9F
- 11-34 1m CSM Power Lemo to Male Eurofast
- 11-35 Termination Resistor for in F Lemo Package
- 11-36 1m DC Power Cable, DB9F, Banana Plugs

12 Mounting Panels, Bosses, Probes, and Hardware

- 12-01 19" Rackmount Panel. Holds up to 4 Displays
- 12-02 18mm x 1.5mm MS Boss and SS Plug
- 12-03 18mm x 1.5mm SS Boss and SS Plug
- 12-04 18mm x 1.5mm Tall Al Boss, Cu Gasket, Al Plug
- 12-05 1/4" NPT MS Boss and Brass Plug, (USA)
- 12-06 1/4" NPT SS Boss and Brass Plug, (USA)

- 12-07 1/4" NPT AI Boss and Brass Plug, (USA)
- 12-08 Pressure Line Assembly, 1/4" dia, 19", (USA)
- 12-08A Pressure Line Assembly, 1/4" dia, 28" (USA)
- 12-09 Inconel Shield
- 12-10 18mm Cu Gasket
- 12-11 Pressure Line Assembly, 6mm dia, 483mm, (Metric)
- 12-11A Pressure Line Assembly, 6mm dia, 711mm (Metric)
- 12-12 1/4" ISO tapered MS Boss and Brass Plug, (Metric)
- 12-13 1/4" ISO tapered SS Boss and Brass Plug, (Metric)
- 12-14 1/4" ISO tapered Al Boss and Brass Plug, (Metric)
- 12-15 15A Fuse
- 12-16 Bifurcated Intake Sample Probe, 8mm
- 12-17 Replacement Bifurcated Tube, 8mm
- 12-18 Aluminum Sensor Mounting Block, 18mm, (not for Type T NOx sensor)
- 12-19 Individual Cylinder Exhaust Probe, 18mm Sensor (USA)
- 12-20 Individual Cylinder Exhaust Probe, 18mm Sensor (Metric)
- 12-21PS Rolling Cart to Support 8 LCAN or NCANs
- 12-22 Sampling-Type Exhaust Probe (USA)
- 12-23 Sampling-Type Exhaust Probe (Metric)
- 12-24 Small Heated Aluminum Sensor Heater Block, 18mm, (not for Type T NOx sensor)
- 12-25 1/4" UNC Module Stacking Standoff
- 12-26 Small Aluminum Sensor Mounting Block, 18mm, (not for Type T NOx sensor)
- 12-27 Cu Gasket for 20mm x 1.5mm Boss and Plug
- 12-28 20mm x 1.5mm SS Boss and SS Plug for NGK NOx
- 12-29 18mm x 1.5mm (male) to 1/4" NPT (female)
- 12-30 Carrying Case, Medium
- 12-31 Aluminum Sensor Mounting Block, 20mm & 18mm, (not for Type T NOx sensor)
- 12-32 Small Aluminum Sensor Mounting Block, 20mm & 18mm, (not for Type T NOx sensor)
- 12-33 Pressure Line Assembly (for baroCAN), 1/4", (USA)
- 12-34 Pressure Line Assembly (for baroCAN), 6mm, (Metric)
- 12-35 Carrying Case for SIM300
- 12-36 Carrying Case for SIM400
- 12-37 Carrying Case for SIM500
- 12-38 Carrying Case for SIM600
- 12-39 Carrying Case for SIM700
- 12-40 Individual Cylinder Exhaust Probe, 20mm Sensor (USA)
- 12-41 Individual Cylinder Exhaust Probe, 20mm Sensor (Metric)
- 12-42 Aluminum Mounting Plate for 8-ch Block and Modules
- 12-43 Carrying Case for SIM800
- 12-44 Multi-Channel Cart
- 12-45 Sample Line Kit, 1/4" dia, 1.3m
- 12-46 Sample Line Kit, 6mm dia, 1.3m
- 12-47 remoteSAMPLER, append suffix /P to Part Number for P-compensation Option
- 12-48 External Mounting Block, append suffix /P to Part Number for P-compensation Option
- 12-49 Aluminum Sensor Mounting Block for Type T NOx sensor
- 12-50 18mm Crush Gasket

13 Software, CAN Adapters, and Manuals

- 13-01 5200 Series Manuals and Config Software (CD)
- 13-02 Kvaser Leaf Light CAN Adapter
- 13-Product Name (Manual)

14 Tools

- 14-01 18mm x 1.5mm Tap
- 14-02 18mm x 1.5mm Die
- 14-03 1/4" NPT Tap
- 14-04 1/4" ISO Tapered Tap
- 14-05 Antiseize
- 14-06 Metal Brush to clean sensor threads
- 14-07 Lambda Sensor Calibration System
- 14-08 20mm x 1.5mm Bottoming Tap
- 14-09 Filler Bottle
- 14-10 Cupric Sulfate (3gm to add to 150cc of water) 14-11 NOx/NH3 5240 Calibration Kit

Appendix B: Module EIB Mode and Stand-alone Mode

LambdaCAN* modules can be used in conjunction with an analyzer (EIB mode) or on its own (Stand-alone mode). When used as part of an analyzer (ex. Lambda 5220, EGR 5230), the module is setup in EIB mode. When delivered to be used alone, the module is setup in Stand-alone mode.

In EIB mode, the module communicates to the display head of an analyzer via a special high-speed communication protocol. The module must be EIB mode when on the EIB with a display head. When in Stand-alone Mode, the module communicates via the common 500 kHz CAN broadcast protocol. This is the default rate and it is programmable.

The module must be properly configured in EIB mode or Stand-alone mode depending on how it will be used.

To convert from one mode to the other requires software reprogramming of the lambda module followed by the removal (set to EIB) or installation (set to Stand-alone) of a jumper inside the module.

◆ To convert a module from Stand-alone to EIB Mode

1. Connect the lambda module to a power supply and a PC via a supported USB-to-CAN communication adapter (Kvaser, ETAS, Peak VectorCAN CAN adapter card) using the cabling shown below. A sensor does not have to be connected to the module. Note that only one module is connected and the display head is not involved.

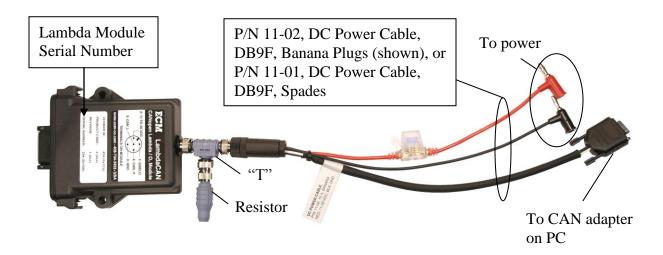
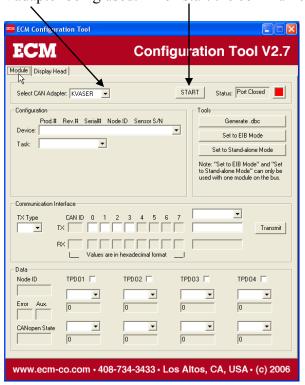
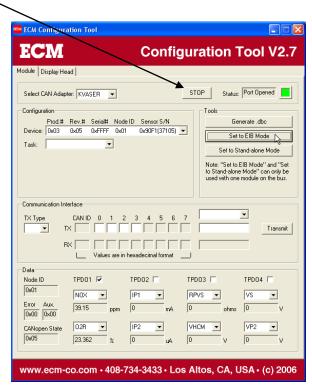
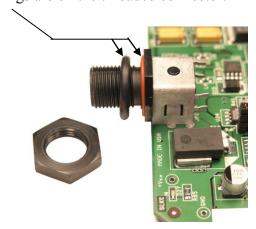




Figure B1: LambdaCAN Module prepared for Reprogramming

2. Start the Configuration Tool (software). Click on the "Module" tab. Select the CAN adapter being used. Then start the communication.

3. Click on the "Set to EIB Mode". Wait for "Done" Message. Stop communication and exit program.

4. Take the nut off the end of the module. Use an 18mm socket without the wrench.


5. Release the two tangs at each side of the module.

6. Slide the PCB out. Remove the jumper from JP4. You can hang it on one pin of JP4 when "off".

7. Make sure both O-rings are on the threaded connector.

- 8. Slide the PCB into the enclosure until the two tangs "click".
- 9. Put the nut on and tighten ONLY ½ turn from where it is seated. If this nut is tightened too much, the connector will crack and the enclosure will not be sealed.
- 10. The lambda module is now in EIB mode and can be on the EIB with a display.

♦ To convert a module from EIB to Stand-alone Mode

The process is similar to the previously-described procedure. Note that in EIB mode, the module will not show up in the device list of the Configuration Tool.

- 1. Use the Configuration Tool (software) to "Set to Stand-alone Mode".
- 2. Install the jumper on JP4 in the lambda module.
- 3. In Stand-alone Mode, the module will continuously broadcast data via 500 kHz CAN (programmable). For more information, refer to the LambdaCAN Module Instruction Manual

Appendix C: Error Codes and Troubleshooting

If one of the Lambda 5220's displays flashes "ERR" followed by "####" (the Error Code), an error has been detected in that channel's module (or attached sensors). The below table lists the errors. The errors are also flashed on the module's LED.

Error Code	Module LED Action	Description of Error					
0000	Green ON	All OK, (green LED constantly on)					
0001	Flashing Green 10hz	Sensor warm-up period					
0002	Green/Both/Red 2s	Power on reset / Init hardware					
0011	Pulse Red 1x/2s	16 bit ADC failed to init. Internal module error. Contact ECM.					
0012	Pulse Red 1x/2s	+Vsw shorted. Internal module error. Contact ECM.					
0013	Red ON	λ sensor turned off (red LED constantly on)					
0014	Pulse Red 1x/2s	λ sensor heater open. λ or Pressure sensor not connected.					
0015	Pulse Red 1x/2s	λ sensor heater shorted. Bad λ cable or sensor.					
0021	Pulse Red 2x/2s	Memory chip in λ sensor's bus shorted. Bad λ cable or sensor.					
0022	Pulse Red 2x/2s	No memory chip in λ sensor detected. Bad λ cable or sensor.					
0023	Pulse Red 2x/2s	CRC16 error. Bad λ cable or sensor.					
0024	Pulse Red 2x/2s	Invalid λ sensor memory chip parameter. Wrong sensor.					
0025	Pulse Red 2x/2s	Non-compatible λ sensor memory chip format (old Rev.)					
0031	Pulse Red 3x/2s	Vsw < 5.6 for > 7 sec. Supply voltage too low.					
0032	Pulse Red 3x/2s	Vsw > 30 V. Supply voltage too high.					
0041	Pulse Red 4x/2s	VS too high. Bad λ cable or sensor.					
0051	Pulse Red 5x/2s	RPVS too high. Sensor too cold, bad, or battery voltage too low.					
0052	Pulse Red 5x/2s	(VH Commanded – VH Measured) > 0.5 V for > 10 sec. Battery voltage too low					
0061	Pulse Red 6x/2s	$VP+ > 6 \text{ V}$. Bad λ cable or cracked sensor (common).					
0062	Pulse Red 6x/2s	$VP+ < 2 V$. Bad λ cable or cracked sensor (common).					
0064	Pulse Red 6x/2s	$0.25 \text{ V} > \text{VS+} > 0.75 \text{ V}$. Bad λ sensor.					
0065	Pulse Red 6x/2s	User data (span) in λ sensor memory chip corrupted.					
		User must reperform λ sensor span.					

The two most common problems are a damaged lambda sensor and a low supply voltage (less than 11 V). When the sensor is damaged, it must be replaced. It cannot be repaired.

Three other displays of interest are:

- 1. "...." which means that a lambda module has not been assigned to that channel. See MOd Setup Option.
- "----" which means that the display head has an internal problem.
 "XXXX" which means that the display is not receiving any data. The lambda module is disconnected, dead, or the EIB cable is broken.

Appendix D: Calculating the %O₂ in Air

The Configuration Tool Software has a routine to calculate the %O₂ in air. If the software is not available, the below may be used.

The oxygen concentration in dry air (zero humidity) is 20.945 and decreases with increasing humidity. The $\%O_2$ in air can be calculated from the barometric pressure (P_b , in mmHg), the relative humidity (Rh), and the saturated water vapor pressure (P_{ws} , in mmHg) by using the following formula:

$$\%O_2 = 20.945\% \times (P_b - P_{ws} \times (Rh/100)) / P_b$$

The saturated water vapor pressure (P_{ws}) is a function of the ambient temperature (T_a) and is given in the table below. For example, at 21 °C, P_{ws} = 18.65 mmHg.

T _a (°C)	0	1	2	3	4	5	6	7	8	9
	P _{ws} (mm Hg)									
0	4.579	4.926	5.294	5.685	6.101	6.543	7.013	7.513	8.045	8.609
10	9.209	9.844	10.518	11.231	11.987	12.788	13.634	14.530	15.477	16.477
20	17.535	18.650	19.827	21.068	22.377	23.756	25.209	26.739	28.349	30.043
30	31.824	33.695	35.663	37.729	39.898	42.175	44.563	47.067	49.692	52.442
40	55.324	58.34	61.50	64.8	68.26	71.88	75.65	79.60	83.71	88.02
50	92.51	97.2	102.09	107.2	112.51	118.04	123.80	129.82	136.08	142.60
60	149.38	156.43	163.77	171.38	179.31	187.54	196.09	204.96	214.17	223.73
70	233.7	243.9	254.6	265.7	277.2	289.1	301.4	314.1	327.3	341.0
80	355.1	369.7	384.9	400.6	416.8	433.6	450.9	468.7	487.1	506.1
90	525.76	546.05	566.99	588.60	610.90	633.9	657.62	682.07	707.27	733.24

1 mmHg = 0.01934 lbf/in2 = 1 torr = 133.32 N/m2

1 atm = 14.696 lbf/in2 = 760 torr = 101325 N/m2

Appendix E: LOCKing and unLOCKing Display Head

When the display head is locked, the parameters displayed and instrument setup cannot be modified. The display head can just be turned on and off.

♦ To LOCK the display head

- 1. Press SYS until "MOd" is displayed.
- 2. Press ↓ until "CONF" is displayed. Then press ENT.
- 3. Press ↓ until "LOCK" is displayed. Then press ENT.
- 4. "50" will be displayed. Press ↑ until "60" is displayed. Then press ENT. Display is now LOCKed.

♦ To unLOCK the display head

- 1. Press SYS until "LOCK" is displayed. Then press ENT.
- 2. "50" will be displayed. Press ↑ until "60" is displayed. Then press ENT. Display is now unLOCKed.

If an unauthorized person learns that 60 is the key number, contact ECM.

Appendix F: Using the Configuration Tool Software

ECM's Configuration Tool runs on a PC and is for use with ECM's analyzers and modules. The Configuration Tool is supplied on a CD with each analyzer and module and is available for download on www.ecm-co.com.

The Configuration Tool can be used for the following:

- 1. To produce a .dbc file for one or more analyzers on the same CAN bus.
- 2. Real-time display of data from analyzers. Only one analyzer's data is shown at a time.
- 3. Log data from one or more analyzers.

To connect a PC to the CAN connector on the back of an analyzer requires the supplied cables (see Figure 2) and a USB-to-CAN adapter. Make sure the CAN bus is properly terminated. The following adapters are supported: Kvaser, ETAS, Peak USB to CAN adapters, and the VectorCAN CAN adapter card. Driver software for one of these adapters must be installed prior to using the Configuration Tool. Driver software will be supplied with the adapter or be available on-line.

Once the analyzer(s) are connected to the CAN bus and turned on, leave "Exclusive" checked, start the Configuration Tool, select the "Analyzers" tab, select the CAN Adapter, leave "Exclusive" checked, and then press the start button. "Status:" should change to "Port Opened".

◆ Producing a .dbc File

Devices receiving CAN messages from one or more analyzers must understand the format of the messages. A .dbc file is used to describe the format. Using the Configuration Tool, a .dbc file describing the format of messages from one or more analyzers on the same CAN bus can be created.

Each analyzer communicates eight pieces of data, two error codes, and two auxiliary codes. The eight pieces of data are: what is being sent to the six analog outputs and what is sent to the upper and lower displays. Before producing a .dbc file for the analyzer(s), each analyzer on the CAN bus should have its displays and analog outputs programmed for the desired data. It is important to note that if a parameter that is being displayed is changed (by pressing the \uparrow or \downarrow key), the CAN data will also be changed to that newly displayed parameter. Similarly for an analog output. LOCKing the display head can be used to avoid this problem.

Once the analyzer(s) have been programmed, send (one analyzer at a time) each analyzer's message format to the Configuration Tool.

To do this:

- 1. In the software, press "Add Device". A "Waiting for Analyzer..." window will appear. Leave it open.
- 2. On an analyzer, press SYS, arrow down to CONF, press ENT, arrow down to CAN, press ENT, and with "IdS" on the display, press ENT.

Five CAN ids need to be entered: one each for CID1, CID2, CID3, CID4, and ERCd. These are entered in decimals. The allowable range is 1 to 2047. If analyzers and modules are on the same CAN bus (not EIB bus), be careful to avoid using the CAN ids used by the modules. The CAN ids used by the modules are: 0x00, 0x80 + Module NID, 0x180 + NID, 0x280 + NID, 0x380 + NID, 0x480 + NID, 0x580 + NID, 0x600 + NID, 0x700 + NID, 0x7E4, and 0x7E5. Note that these module CAN ids are given in hex. CID1 is the CAN id for the data going to analog outputs 1 and 2. CID2 is for analog outputs 3 and 4. CID3 is for analog outputs 5 and 6. CID4 is for the upper and lower displays. ERCd is for the error codes and auxiliary codes. After entering the CAN id for ERCd, ".dBC" will appear on the display. Press ENT, you'll get some "spinning wheels" on the analyzer and the format of the messages for that analyzer will be sent to the Configuration Tool.

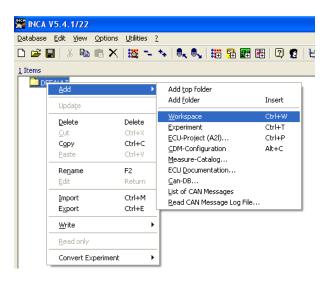
- 3. Each analyzer's serial number will appear in the "Device:" window list (open window to see all present) after its message format has been received by the Configuration Tool. When an analyzer's serial number is in the "Device:" window, its data will appear at the bottom of the Configuration Tool's screen.
- 4. After the last analyzer on the CAN bus has sent its message format to the Configuration Tool, that list of analyzers can be saved using "Save List" and later recalled using "Load List". This saves having to resend message formats to the Configuration Tool next time the tool is used.
- 5. A .dbc file for all analyzers in the "Device:" window list is produced by pressing "Generate .dbc".
- 6. The analog parameters are called A#_sn where "#" is the analog output number and "sn" is the serial number of the display head (ex. A1_45405300). The serial number is the first thing that is displayed on startup on the display head. The display parameters are called TopDisp_sn, and BtmDisp_sn. The error codes are called TopErr_sn, TopAux_sn, BtmErr_sn, and BtmAux_sn. During O2 sensor warm-up when the display is counting down, TopAux_sn or BtmAux_sn will contain the countdown number.

◆ Real-Time Display

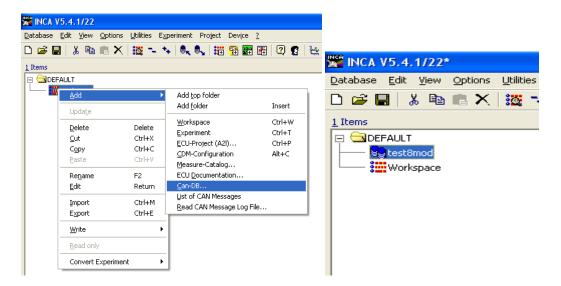
When an analyzer's serial number is in the "Device:" window, its data will appear at the bottom of the Configuration Tool's screen.

◆ Logging Data

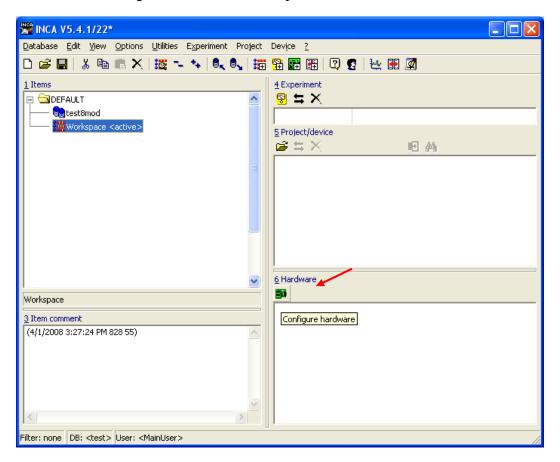
Analyzers whose serial numbers are in the "Device:" window list can be data logged. Press the "Log Data" button and follow the instructions. Data is saved in .csv format.

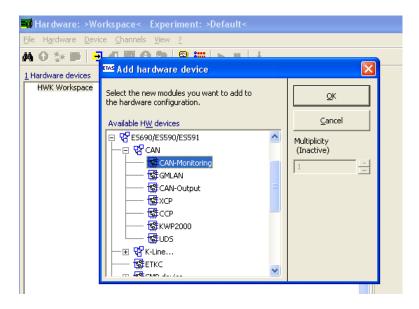

Appendix G: Setting Up ETAS INCA for ECM Modules

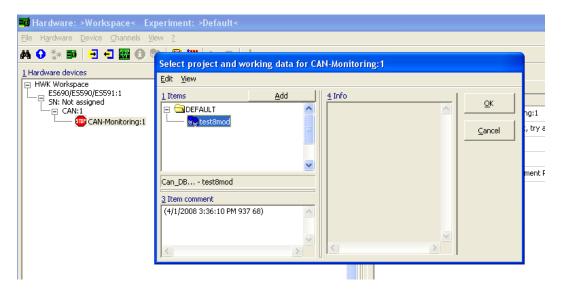
Hardware Setup: Using ETAS ES591.1

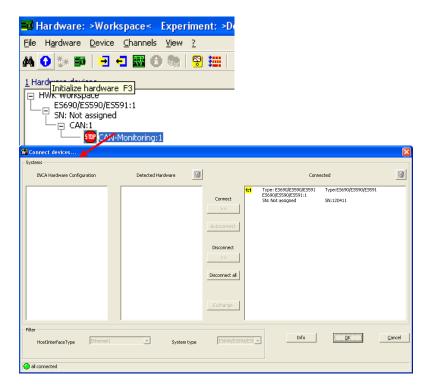

- 1. Connect the power port to a power source between 6V and 32V.
- 2. Connect the Ethernet port directly to the Ethernet port on your PC. This port does not use an internet/intranet connection like a router.
- 3. Connect either the CAN1 or CAN2 port to a CAN network (i.e. ECM analyzer(s) and/or module(s)).

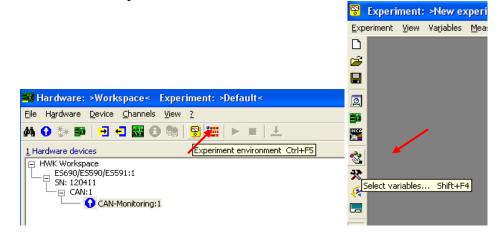
Software Setup: Using ETAS INCA V5.4.1, Hotfix 22, GM Install

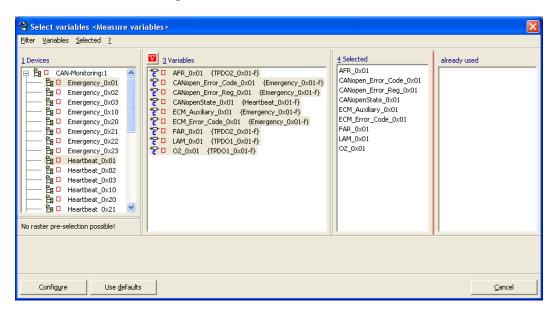

- 1. Double click the INCA V5.4 icon to open the software.
- 2. **Create a new Database**. In the Database menu, select New. Give your database a name (i.e. a folder name). In INCA, a Database means the current working directory. Each project is created in a unique directory. When INCA is opened, it will default to the last Database that was used.
- 3. **Add a new Workspace**. Right click on the "DEFAULT" folder icon, select Add > Workspace. You can rename it to whatever you want.

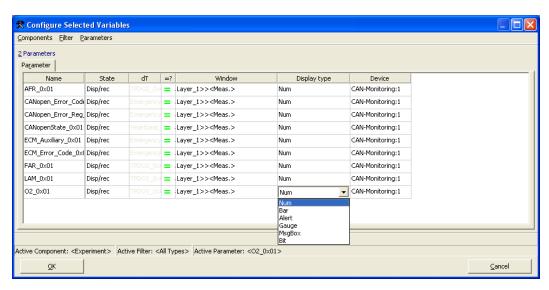

4. **Add a new dbc file for your project.** Right click on the workspace you created in step 3, select Add > Can-DB. Browse to your dbc file and click open. Appendix F describes how to produce this .dbc file. In this example, we are using a file named test8mod.dbc. An INCA log window will pop up. You can ignore this.

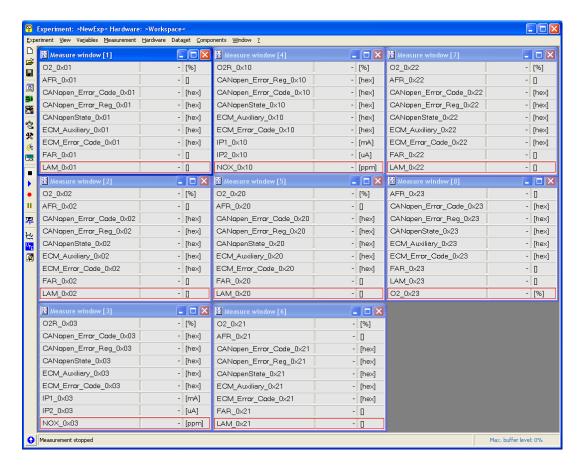

5. **Configure the hardware.** Click on the icon for the workspace you created in step 3. Open the Hardware Configuration icon under the section text "6. Hardware". A hardware configuration window will open.

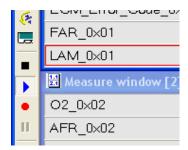

6. **Select the hardware.** In the hardware configuration window, right click the "HWK Workspace" listed under the section text "1. Hardware Devices", and select Insert. Select the ETAS device you wish to use. In this example, we are using an ETAS ES591.1. Expand the selection tree by clicking the "+" next to the hardware device model. Expand the CAN selection and select CAN-Monitoring. Click OK.


7. **Associate the dbc.** When you clicked OK in the last step, another window will pop up that will allow you to select a dbc that you have added to your workspace from step 4. Expand the selection tree, select your dbc file, and click OK.


8. **Initialize hardware.** The hardware is currently stopped, as indicated by the red stop sign icon next to the selected hardware. You must initialize it before you can use it to collect data. Click on the Initialize Hardware button on the upper tool bar and wait for the hardware to complete its initialization. Another window will pop up to confirm the device to connect to. Click OK.


9. **Open an Experiment Environment.** Click on the Experiment Environment button on the upper tool bar to open an Experiment Environment. The Experiment Environment is where you can setup the monitoring of the CAN bus. By default, the Experiment Environment will be blank. You must select the variables from the dbc file that you wish to monitor. Click on the Select Variables icon in the left hand tool bar of the Experiment Environment.


10. **Select and Configure Variables.** Select the variables that you wish to monitor in the Experiment Environment. These variables names are based on the data found in the dbc file. Click Configure.


11. Another window will pop up to configure each selected variable. You can configure, for each variable, whether to record or simply display the data, how the data will be displayed (graphs, charts, gauges, numeric, etc.). When complete, click OK. We have left all configurations at default for this example.

12. A new sub-window will be added to the Experiment Environment. You do not need to select all the variables you want to monitor all at once. You can click on the Select Variables icon again at a later time to add more variables. Each set of variables you add will be placed in a new sub-window unless it is configured to join an existing sub-window. In this example, we have created a sub-window for each of the eight modules in the dbc file.

13. **Start CAN monitoring.** Right now there is no data displayed. That is because the CAN monitoring is stopped. To begin CAN monitoring, click on the Start Visualization icon (blue triangle) on the left hand tool bar. To stop CAN monitoring, click the Stop Measuring icon (black square) on the left hand tool bar. To begin recording the data, click on the Start Recording icon (red circle) on the left hand tool bar.

Appendix H: Setting Up ATI Vision for ECM Modules

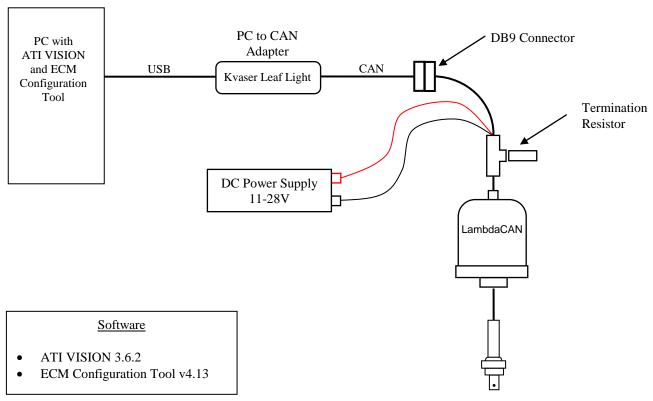
NOTE: While shown here for a single LambdaCAN* module, the same procedure applies for any of ECM's CAN-based devices (i.e. Analyzers or Modules) as well as for multiple device simultaneously connected on the same bus.

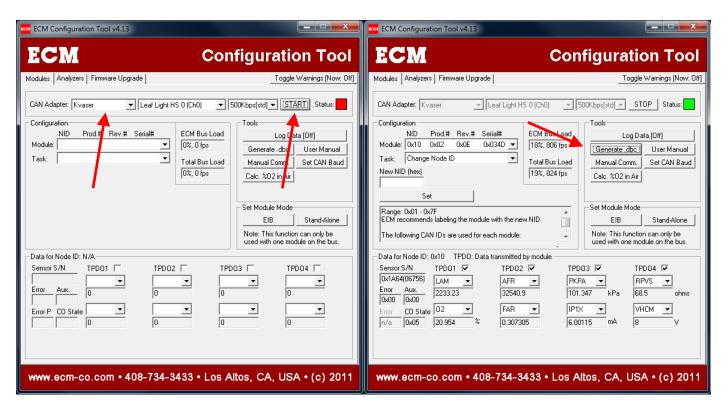
Introduction

Connecting ECM LambdaCAN hardware to ATI VISION software is simple and does not require any third-party software interface. Using the ECM Configuration Tool software to produce a .dbc database file, and the ATI VISION CANMonitor interface, any available hardware CAN interface can be used to read LambdaCAN data.

Hardware Setup

A typical hardware configuration is shown in Figure 1. In this example, a Kvaser Leaf Light CAN-USB adapter is used. Other supported adapters have a similar procedure. Connect the DB9 CAN connector of the LambdaCAN to the PC to CAN adapter. Supply 11-28V DC (5A min. supply) to the LambdaCAN. For the case of an ECM analyzer (ex. Lambda 5220), connect to CAN port on display head. Do not directly connector to modules.



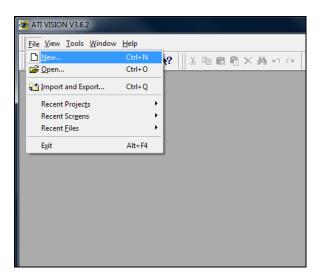

Figure 1: Equipment Schematic Layout

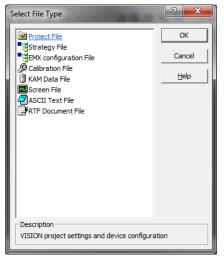
Creating a .dbc File

The ECM Configuration Tool is used to create a .dbc database file for describing the CAN messages broadcast from an analyzer or module. All ECM products with a CAN interface use the CANopen protocol at 500kHz by default. To generate a .dbc file from an analyzer, refer to Appendix F. To generate a .dbc file for a module (ex. LambdaCAN module):

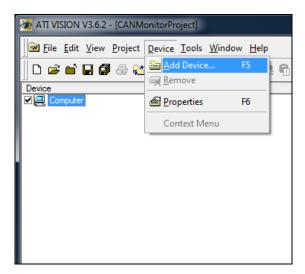
- 1. Connect hardware as shown in Figure 1. Ensure LambdaCAN bi-color LED indicator near sensor connector is visible (green during normal operation, flashing red without sensor attached).
- 2. Run ECM Configuration Tool software, and select the Modules tab (or the Analyzers tab if connecting to 5200 series analyzers).
- 3. Select CAN adapter from drop down menus as shown in Figure 2, and click START.
- 4. After LambdaCAN module(s) have initialized, select desired parameters to transmit from the TPDO drop down menus for each module.
- 5. Click Generate .dbc, and save this file in a location such as the VISION Projects folder.
- 6. Click STOP to end CAN connection.

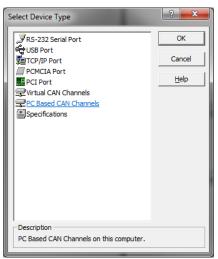
NOTE: Whenever TPDO's are modified, a new .dbc file must be created.

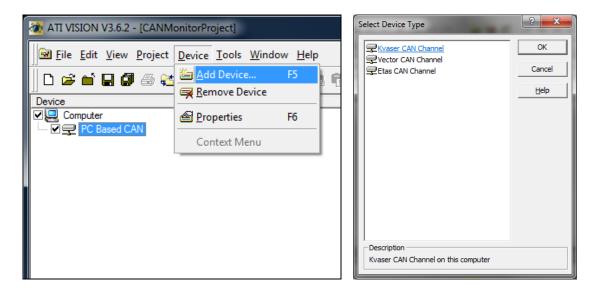



Figure 2: ECM Configuration Tool

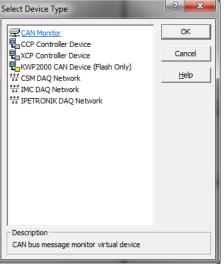
Setup CANMonitor using ATI VISION


ATI VISION CANMonitor provides a method of reading general purpose information from any available CAN channel. The .dbc file generated by the ECM Configuration Tool is used to describe the format of the information available to VISION. To setup a CANMonitor in ATI VISION:

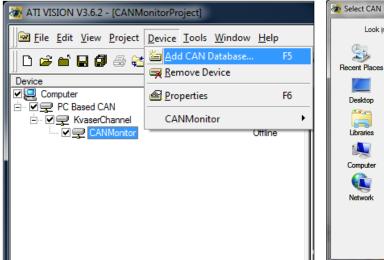

1. Run ATI VISION and open an existing Project File or create a new one by clicking File → New → Project File. In this example the Project has been named CANMonitorProject.

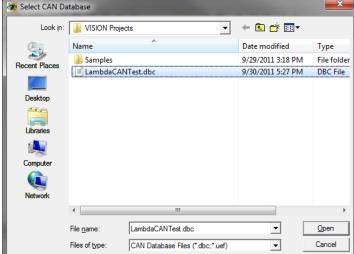


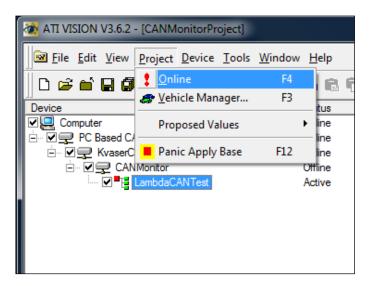
2. Add a Device by clicking Device → Add Device, select PC Based CAN Channels from the list.



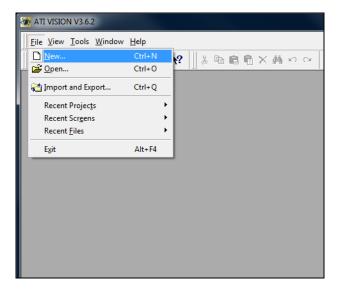
3. Add a physical hardware device by clicking Device → Add Device, and select Kvaser CAN Channel.

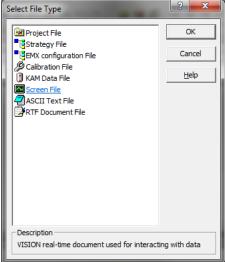



4. Select a CANMonitor device by again clicking Device → Add Device, and select CANMonitor.

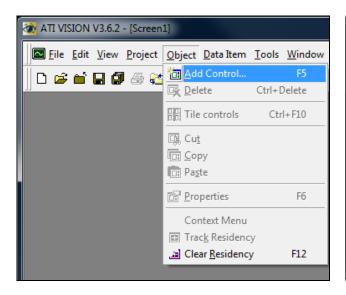


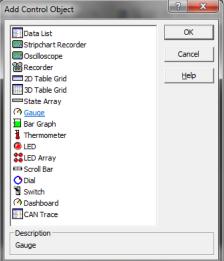
5. Add the .dbc file generated from the ECM Configuration Tool to CANMonitor by clicking Device → Add CAN Database and browsing to the previously created .dbc file.

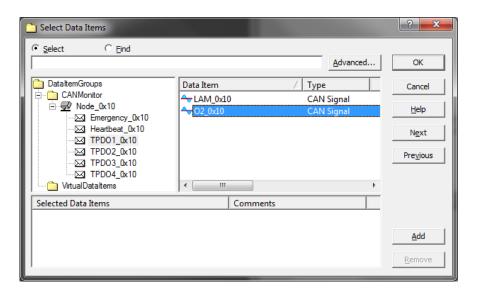




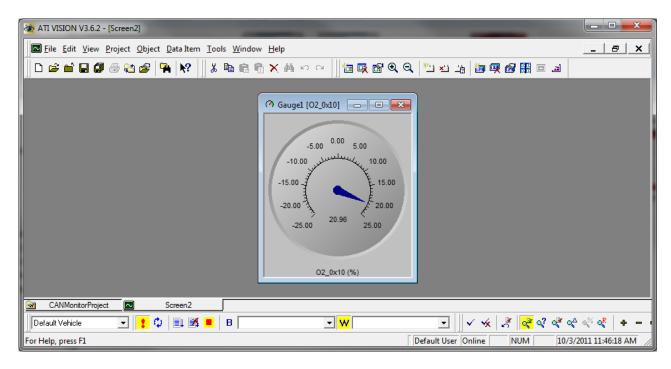
6. Enable the hardware by clicking Project → Online. The status of all of the devices should now show a Status of Online, and a value should appear in the Data Rate column of the Project window.




7. To view data, create a new Screen File and add a Control. Click File → New → Screen File



8. Select Object → Add Control → Gauge



9. In the Select Data Items window open the CANMonitor file tree to view all of the available signals. Here the O2% from Node 0x10 has been selected. Click OK to add the Data Item to the Control.

10. Data should be visible on the gauge.

Appendix I. Using the Lambda (02) Sensor Simulator

The Lambda Sensor Simulator outputs currents to simulate a lambda (O_2) sensor and voltages to simulate a pressure sensor. It is plugged into a LambdaCAN* module instead of the lambda and pressure sensors. When plugged in, if the LambdaCAN* module is operating properly, it will report the correct currents (i.e. lambdas) and voltages (i.e. pressures) output by the simulator.

The simulator is a useful tool to check out a system where there is a problem and it is not known if the sensor, cable, module, or data acquisition system receiving the CAN data from the LambdaCAN* module is the cause of the problem. The simulator checks out everything but the sensors, however once everything else checks out okay, the focus can be put on the sensors. A properly operating LambdaCAN* module monitors lambda sensor condition and can calibrate the lambda sensor. An external pressure source is required to check out the pressure sensor.

Lambda Sensor Simulators can be returned to ECM on a schedule (1 year recommended) for recalibration.

Safety Warnings

In installation and use of this product, comply with the National Electrical Code and any other applicable Federal, State, or local safety codes.

The lambda sensor is heated, gets hot, and can burn you.

Always wear eye protection when working near engines, vehicles, or machinery.

During installation, turn off the power and take all other necessary precautions to prevent injury, property loss, and equipment damage. Do not apply power until all wiring is completed.

Never work on a running engine.

When installing the Lambda 5220's cabling and sensor(s) on a stopped engine, it is best to think-out your moves before you make them.

Route and cable-tie all cables away from hot, moving, sharp, or high voltage (spark) objects.

Take into consideration the movement of the engine, chassis, and wind buffeting when instrumenting the engine.

Clear tools away from the engine before starting.

Operate the engine only in a well ventilated area and never when you or one of your coworkers is tired.

When operating the Lambda 5220 in a moving vehicle, the operator should keep his or her eyes on the road.

One measure of professionalism is how much you and your co-workers can accomplish without an injury. Always be at your professional best. Think and act with safety in mind.

Warranty and Disclaimers

WARRANTY

The products described in this manual, with the exception of the lambda and pressure sensors, are warranted to be free from defects in material and workmanship for a period of 365 days from the date of shipment to the buyer. Within the 365 day warranty period, we shall at our option repair such items or reimburse the customer the original price of such items which are returned to us with shipping charges prepaid and which are determined by us to be defective. This warranty does not apply to any item which has been subjected to misuse, negligence or accident; or misapplied; or modified; or improperly installed.

The lambda and pressure sensors are considered an expendable part and as such cannot be covered by a warranty.

This warranty comprises the sole and entire warranty pertaining to the items provided hereunder. Seller makes no other warranty, guarantee, or representation of any kind whatsoever. All other warranties, including but not limited to merchantability and fitness for purpose, whether express, implied, or arising by operation of law, trade usage, or course of dealing are hereby disclaimed.

The warranty is void if a module or the display head is opened.

LIMITATION OF REMEDY

Seller's liability arising from or in any way connected with the items sold and/or services provided shall be limited exclusively to repair or replacement of the items sold or refund of the purchase price paid by buyer, at seller's sole option. In no event shall seller be liable for any incidental, consequential or special damages of any kind or nature whatsoever, including but not limited to lost profits arising from or in any way connected with items sold and/or services provided to buyer, whether alleged to arise from breach of contract, express or implied warranty, or in tort, including without limitation, negligence, failure to warn or strict liability. In no event shall the company's liability to buyer arising out of or relating to the sale of any product or service exceed the purchase price paid by buyer to the company for such product or service.

PRODUCT CHANGES

We reserve the right to discontinue a particular product or to make technical design changes at any time without notice.

5191 Lafayette St. Santa Clara, CA, 95054

USA

Phone: (408) 734-3433 FAX: (408) 734-3432 Email: <u>sales@ecm-co.com</u> Web: www.ecm-co.com

EC DECLARATION OF CONFORMITY

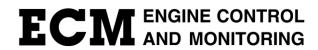
We declare under our sole responsibility that the products:

AFM1540 Lambda Module
AFM1600 Lambda and O₂ Analyzer
DIS1000 Display Head
EGR 4830 Analyzer
Lambda 5220 Lambda Analyzer
NOx 5210 NOx Analyzer
EGR 5230 EGR Analyzer
LambdaCAN, LambdaCANc, LambdaCANd, LambdaCANp Lambda Modules
NOxCAN, NOxCANg, NOxCANt NOx Modules
NOx1000 NOx Module
baroCAN Module
dashCAN, dashCANc, dashCAN+, dashCAN2
appsCAN
SIM300, SIM400, SIM500, SIM600, SIM700, SIM800
BTU200
NOx/NH3 5240 Analyzer

To which this declaration relates are in conformity with the essential requirements of the following standards:

EN61326: 1997/A2: 2001 (Class A & Annex A)

EN61010-1: 2001 (Electrical Safety)


Metrica

And therefore conform to the requirements of the following directives:

89/336/EEC Electromagnetic Compatibility (EMC)

72/23/EEC Low Voltage Directive (LVD)

Ronald S. Patrick Vice President Sales August 22, 2014

